Home
Class 11
MATHS
If A=[a(ij)](nxxn), where a(ij)=i^100+j^...

If `A=[a_(ij)]_(nxxn)`, where `a_(ij)=i^100+j^100`, then `lim_(ntooo) ((overset(n)overset(suma_(ij))(i=1))/n^101)` equals

A

`1/50`

B

`1/101`

C

`2/101`

D

`3/101`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}}{n^{101}} \] where \( a_{ij} = i^{100} + j^{100} \). ### Step-by-step Solution: 1. **Write the expression for \( a_{ij} \)**: \[ a_{ij} = i^{100} + j^{100} \] 2. **Calculate the double summation**: We can express the double summation as: \[ \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} (i^{100} + j^{100}) \] This can be split into two separate sums: \[ = \sum_{i=1}^{n} \sum_{j=1}^{n} i^{100} + \sum_{i=1}^{n} \sum_{j=1}^{n} j^{100} \] Since the inner summation over \( j \) for each fixed \( i \) gives \( n \cdot i^{100} \) (as \( j \) runs from 1 to \( n \)), we have: \[ = n \sum_{i=1}^{n} i^{100} + n \sum_{j=1}^{n} j^{100} = 2n \sum_{k=1}^{n} k^{100} \] 3. **Use the formula for the sum of powers**: The sum \( \sum_{k=1}^{n} k^{100} \) can be approximated using the formula: \[ \sum_{k=1}^{n} k^{p} \sim \frac{n^{p+1}}{p+1} \quad \text{as } n \to \infty \] For \( p = 100 \): \[ \sum_{k=1}^{n} k^{100} \sim \frac{n^{101}}{101} \] 4. **Substitute back into the summation**: Now substituting this back, we get: \[ 2n \sum_{k=1}^{n} k^{100} \sim 2n \cdot \frac{n^{101}}{101} = \frac{2n^{102}}{101} \] 5. **Evaluate the limit**: Now we can substitute this into our limit: \[ \lim_{n \to \infty} \frac{\frac{2n^{102}}{101}}{n^{101}} = \lim_{n \to \infty} \frac{2n^{102}}{101n^{101}} = \lim_{n \to \infty} \frac{2n}{101} = \frac{2}{101} \] Thus, the final result is: \[ \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}}{n^{101}} = \frac{2}{101} \] ### Final Answer: \[ \frac{2}{101} \]

To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}}{n^{101}} \] where \( a_{ij} = i^{100} + j^{100} \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

Let M = [a_(ij)]_(3xx3) where a_(ij) in {-1,1} . Find the maximum possible value of det(M).

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

Let A=[a_(ij)]_(nxxn) n is odd. Then det ((A-A^(T))^(2009)) is equal to

Let M = [a_(ij)]_(3xx3) where a_(ij) in {-1,1} . Find the maximum possible value of det(M). (A) 3 (B) 4 (C) 5 (D) 6

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Section I - Solved Mcqs
  1. If A=[(1,0,0),(0,1,1),(0,-2,4)] , 6A^(-1)=A^2+cA+dI, then (c,d) is :

    Text Solution

    |

  2. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  3. If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse o...

    Text Solution

    |

  4. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  5. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  6. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  7. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  8. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  9. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  10. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  11. The value of a,b,c when [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal , ...

    Text Solution

    |

  12. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |

  13. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |

  14. Find the inverse of [0 1-1 4-3 4 3-3 4]

    Text Solution

    |

  15. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  16. If A=([a(i j)])(4xx4,) such that a(i j)={2,w h e ni=j0,w h e ni!=j ,t ...

    Text Solution

    |

  17. If A is skew-symmetric matrix of order 2 and B=[(1,4),(2,9)] and c[(9...

    Text Solution

    |

  18. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  19. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  20. How many 3xx3 matrices M with entries from {0, 1, 2} are there, for wh...

    Text Solution

    |