Home
Class 11
MATHS
If A is skew-symmetric matrix of order ...

If A is skew-symmetric matrix of order `2 and B=[(1,4),(2,9)] and c[(9,-4),(-2,1)]` respectively. Then `A^3 BC + A^5B^2C^2 + A^7B^3C^3 +.....+A^(2n+1) B^n C^n` where `n in N` is

A

a symmetric matrix

B

a skew-symmetric matrix

C

an identity matrix

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = A^3 BC + A^5 B^2 C^2 + A^7 B^3 C^3 + \ldots + A^{2n+1} B^n C^n \] where \( A \) is a skew-symmetric matrix of order 2, and \( B \) and \( C \) are given matrices. ### Step 1: Understand the properties of skew-symmetric matrices A skew-symmetric matrix \( A \) satisfies the property: \[ A^T = -A \] For a 2x2 skew-symmetric matrix, it can be represented as: \[ A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \] ### Step 2: Compute \( BC \) and \( CB \) Given: \[ B = \begin{pmatrix} 1 & 4 \\ 2 & 9 \end{pmatrix}, \quad C = \begin{pmatrix} 9 & -4 \\ -2 & 1 \end{pmatrix} \] First, we compute \( BC \): \[ BC = \begin{pmatrix} 1 & 4 \\ 2 & 9 \end{pmatrix} \begin{pmatrix} 9 & -4 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 9 + 4 \cdot (-2) & 1 \cdot (-4) + 4 \cdot 1 \\ 2 \cdot 9 + 9 \cdot (-2) & 2 \cdot (-4) + 9 \cdot 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 9 - 8 = 1 \) - First row, second column: \( -4 + 4 = 0 \) - Second row, first column: \( 18 - 18 = 0 \) - Second row, second column: \( -8 + 9 = 1 \) Thus, \[ BC = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] Now compute \( CB \): \[ CB = \begin{pmatrix} 9 & -4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 9 \end{pmatrix} = \begin{pmatrix} 9 \cdot 1 + (-4) \cdot 2 & 9 \cdot 4 + (-4) \cdot 9 \\ -2 \cdot 1 + 1 \cdot 2 & -2 \cdot 4 + 1 \cdot 9 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 9 - 8 = 1 \) - First row, second column: \( 36 - 36 = 0 \) - Second row, first column: \( -2 + 2 = 0 \) - Second row, second column: \( -8 + 9 = 1 \) Thus, \[ CB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 3: Use the properties of \( BC \) and \( CB \) Since \( BC = I \) and \( CB = I \), we can simplify the original expression \( S \): \[ S = A^3 I + A^5 I + A^7 I + \ldots + A^{2n+1} I \] This simplifies to: \[ S = A^3 + A^5 + A^7 + \ldots + A^{2n+1} \] ### Step 4: Identify the pattern in powers of \( A \) Since \( A \) is skew-symmetric, we know: - \( A^2 \) is symmetric. - \( A^3 \) is skew-symmetric. - \( A^5 \) is skew-symmetric. - \( A^{2n+1} \) is skew-symmetric. ### Step 5: Analyze the sum \( S \) The sum \( S \) consists of skew-symmetric matrices: \[ S = A^3 + A^5 + A^7 + \ldots + A^{2n+1} \] ### Step 6: Determine the nature of \( S \) Since the sum of skew-symmetric matrices is also skew-symmetric, we conclude that: \[ S \text{ is skew-symmetric.} \] ### Final Answer Thus, the final answer is that \( S \) is a skew-symmetric matrix.

To solve the problem, we need to evaluate the expression: \[ S = A^3 BC + A^5 B^2 C^2 + A^7 B^3 C^3 + \ldots + A^{2n+1} B^n C^n \] where \( A \) is a skew-symmetric matrix of order 2, and \( B \) and \( C \) are given matrices. ### Step 1: Understand the properties of skew-symmetric matrices ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Prove that C_3 + 2.C_4+ 3.C_5 + ……..+ (n-2).C_n = (n-4).2^(n-1) + (n+2) where n > 3

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If A B C is a right triangle right-angled at Ba n dM ,N are the mid-points of A Ba n dB C respectively, then 4(A N^2+C M^2)= (A) 4A C^2 (B) 5A C^2 (C) 5/4A C^2 (D) 6A C^2

If (r)_n , denotes the number rrr... (n digits) , where r = 1,2,3,...,9 and a=(6)_n,b=(8)_n,c=(4)_(2n) , then

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

If there are three square matrix A, B, C of same order satisfying the equation A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2)) , then prove that det .(B-C) = 0, n in N .

The symmetric difference of A={1,2,3}a n d\ B={3,4,5} is a. {1,2} b. {1,2,4,5} c. {4,3} d. {2,5,1,4,3}

If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C . find matrix C where C is a 2 by 2 matrix.

If A=[(1, 2),( 0, 3)] is written as B+C , where B is a symmetric matrix and C is a skew-symmetric matrix, then find Bdot

The circle inscribed in the triangle ABC touches the side BC, CA and AB in the point A_(1)B_(1) and C_(1) respectively. Similarly the circle inscribed in the Delta A_(1) B_(1) C_(1) touches the sieds in A_(2), B_(2), C_(2) respectively and so on. If A_(n) B_(n) C_(n) be the nth Delta so formed, prove that its angle are pi/3-(2)^-n(A-(pi)/(3)), pi/3-(2)^-n(B-(pi)/(3)),pi/3-(2)^-n(C-(pi)/(3)). Hence prove that the triangle so formed is ultimately equilateral.

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Section I - Solved Mcqs
  1. If A=[(1,0,0),(0,1,1),(0,-2,4)] , 6A^(-1)=A^2+cA+dI, then (c,d) is :

    Text Solution

    |

  2. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  3. If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse o...

    Text Solution

    |

  4. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  5. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  6. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  7. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  8. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  9. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  10. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  11. The value of a,b,c when [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal , ...

    Text Solution

    |

  12. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |

  13. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |

  14. Find the inverse of [0 1-1 4-3 4 3-3 4]

    Text Solution

    |

  15. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  16. If A=([a(i j)])(4xx4,) such that a(i j)={2,w h e ni=j0,w h e ni!=j ,t ...

    Text Solution

    |

  17. If A is skew-symmetric matrix of order 2 and B=[(1,4),(2,9)] and c[(9...

    Text Solution

    |

  18. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  19. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  20. How many 3xx3 matrices M with entries from {0, 1, 2} are there, for wh...

    Text Solution

    |