Home
Class 11
MATHS
Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], ...

Let `p=[(3,-1,-2),(2,0,alpha),(3,-5,0)],` where `alpha in RR.` Suppose `Q=[q_(ij)]` is a matrix such that `PQ=kI,` where `k in RR, k != 0 and I`is the identity matrix of order 3. If `q_23=-k/8 and det(Q)=k^2/2,` then

A

`alpha0,k=8`

B

`4alpha-k+8=0`

C

`det(PadjQ)=2^9`

D

`det(Q adjP)2^13`

Text Solution

Verified by Experts

The correct Answer is:
B, C

We have,
`PQ =kl and det (Q) =k^2/2`
`rArr det(PQ)=det(kI) and det (Q)=k^2/2`
`rArr det (P) det(Q) =k^3and det (Q) =k^2/2`
`rArr k^2/2det(P) =k^3and det(Q) =k^2/2`
`rArr det (P) =2k and det (Q) =k^2/2`
Again, PQ = kI
`rArr Q=P^(-1) (kI) =kP^(-1)`
`rArr Q=k(1/absPadjP)`
`rArr Q=k(1/(2k) adjP)`
`rArr Q=1/2adjP`
`rArr q_23 =1/2(adjP) _23 =1/2" cofactor " P_32 =-1/2{:abs((3,-2),(2,alpha)):}`
`rArr =-k/8=-1/2(3alpha +4)`
`rArr k=12alpha +16 ...(i)`
Now, `det (P) =2K`
`rArr {:abs((3,-1,-2),(2,0,alpha),(3,-5,0))=2k:}`
`rArr 15 alpha-3alpha+20=2k`
`rArr k=6alpha+10`
Solving (i) and (ii), we get : `alpha=-1 k=4`.
`:. 4alpha-k+8=-4-4+8=0`
So, option (b) is correct.
Now,
`det(P(adjQ)) =abs(PadjQ)=absPabs(adjQ)`
`=2kabs(Q)^2=2k(k^2/2)^2=1/2k^5=2^9`
and,
`det (Q(adjP))= abs(QadjP)=absQ abs(adjP)`
`=absQabs(P)^2=k^2/2xx(2k)^2=2k^4=2xx(4)^45=2xx(4)^4=2^9`
So, option (c) is correct.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let A be a matrix of order 3 such that A^(2)=3A-2I where, I is an identify matrix of order 3. If A^(5)=alphaA+betaI , then alphabeta is equal to

Let A=[("tan"pi/3,"sec" (2pi)/3),(cot (2013 pi/3),cos (2012 pi))] and P be a 2 xx 2 matrix such that P P^(T)=I , where I is an identity matrix of order 2. If Q=PAP^(T) and R=[r_("ij")]_(2xx2)=P^(T) Q^(8) P , then find r_(11) .

If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an identity matrix, prove theat det (M-I)=0.

Let A be a square matrix of order 2 such that A^(2)-4A+4I=0 , where I is an identity matrix of order 2. If B=A^(5)+4A^(4)+6A^(3)+4A^(2)+A-162I , then det(B) is equal to _________

If A is square matrix of order 3 matrix, |A| != 0 and |3A|=k|A| , then write the value of k .

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

A square matrix [a_(ij)] such that a_(ij)=0 for i ne j and a_(ij) = k where k is a constant for i = j is called _____

Let P=[[1,0,0],[4,1,0],[16,4,1]] and I be the identity matrix of order 3 . If Q = [q_()ij ] is a matrix, such that P^(50)-Q=I , then (q_(31)+q_(32))/q_(21) equals

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Section I - Solved Mcqs
  1. If A=[(1,0,0),(0,1,1),(0,-2,4)] , 6A^(-1)=A^2+cA+dI, then (c,d) is :

    Text Solution

    |

  2. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  3. If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse o...

    Text Solution

    |

  4. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  5. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  6. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  7. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  8. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  9. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  10. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  11. The value of a,b,c when [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal , ...

    Text Solution

    |

  12. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |

  13. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |

  14. Find the inverse of [0 1-1 4-3 4 3-3 4]

    Text Solution

    |

  15. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  16. If A=([a(i j)])(4xx4,) such that a(i j)={2,w h e ni=j0,w h e ni!=j ,t ...

    Text Solution

    |

  17. If A is skew-symmetric matrix of order 2 and B=[(1,4),(2,9)] and c[(9...

    Text Solution

    |

  18. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  19. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  20. How many 3xx3 matrices M with entries from {0, 1, 2} are there, for wh...

    Text Solution

    |