Home
Class 11
MATHS
If E(theta)=[[cos theta, sin theta] , [-...

If `E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]]` then `E(alpha) E(beta)=`

A

`E(0^@)`

B

`E(alphabeta)`

C

`E(alpha+beta)`

D

`E(alpha-beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of two matrices \( E(\alpha) \) and \( E(\beta) \), where: \[ E(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] ### Step-by-Step Solution: 1. **Find \( E(\alpha) \)**: Substitute \( \theta \) with \( \alpha \) in the matrix \( E(\theta) \): \[ E(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \] **Hint**: Remember to replace \( \theta \) with \( \alpha \) in the matrix. 2. **Find \( E(\beta) \)**: Substitute \( \theta \) with \( \beta \) in the matrix \( E(\theta) \): \[ E(\beta) = \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix} \] **Hint**: Similarly, replace \( \theta \) with \( \beta \) in the matrix. 3. **Multiply \( E(\alpha) \) and \( E(\beta) \)**: We need to compute the product \( E(\alpha) E(\beta) \): \[ E(\alpha) E(\beta) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix} \] **Hint**: Use the matrix multiplication rule (row by column). 4. **Calculate the elements of the resulting matrix**: - First element (1,1): \[ \cos \alpha \cos \beta + \sin \alpha (-\sin \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] - Second element (1,2): \[ \cos \alpha \sin \beta + \sin \alpha \cos \beta \] - Third element (2,1): \[ -\sin \alpha \cos \beta + \cos \alpha (-\sin \beta) = -\sin \alpha \cos \beta - \cos \alpha \sin \beta \] - Fourth element (2,2): \[ -\sin \alpha \sin \beta + \cos \alpha \cos \beta \] Thus, the product matrix is: \[ E(\alpha) E(\beta) = \begin{bmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & \cos \alpha \sin \beta + \sin \alpha \cos \beta \\ -\sin \alpha \cos \beta - \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \end{bmatrix} \] 5. **Use trigonometric identities**: From trigonometric identities, we know: - \( \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) - \( \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) Therefore, we can rewrite the matrix as: \[ E(\alpha) E(\beta) = \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} \] 6. **Conclude**: We can see that: \[ E(\alpha) E(\beta) = E(\alpha + \beta) \] **Final Answer**: \[ E(\alpha) E(\beta) = E(\alpha + \beta) \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If A=[[cos theta, sin theta],[sin theta, cos theta]],B=[[cos phi, sin phi],[sin phi, cos phi]] show that AB=BA.

Prove the orthogonal matrices of order two are of the form [(cos theta,-sin theta),(sin theta,cos theta)] or [(cos theta,sin theta),(sin theta,-cos theta)]

If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2theta)]:},and thetaand phi differ by an odd multiple of pi//2," then "E(theta)E(phi) is a

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

If A(theta)=[(sin theta, i cos theta),(i cos theta, sin theta)] , then which of the following is not true ?

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If an upper triangular matrix A=[a](nxxn) the elements a(1)=0 for

    Text Solution

    |

  2. If A is any mxn matrix and B is a matrix such that AB and BA are both ...

    Text Solution

    |

  3. If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(...

    Text Solution

    |

  4. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  5. If A=[(cos^(2)alpha,cos alphasin alpha),(cos alpha sin alpha, sin^(2)a...

    Text Solution

    |

  6. The matrix X in the equation AX=B, such that A={:[(1,3),(0,1)]:}andB={...

    Text Solution

    |

  7. If I=[1 0 0 1] , J=[0 1-1 0] and B=[costhetasintheta-sinthetacostheta]...

    Text Solution

    |

  8. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  9. If A is an orthogonal matrix then A^(-1) equals a.A^T b. A c. A^2 ...

    Text Solution

    |

  10. If D=diag(d1,d2,d3,…,dn)" where "d ne 0" for all " I = 1,2,…,n," then ...

    Text Solution

    |

  11. If {:A=[(ab,b^2),(-a^2,-ab)]:}, then A is

    Text Solution

    |

  12. If A is a 3xx3 matrix and B is a matrix such that A^TB and BA^(T) are ...

    Text Solution

    |

  13. Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}, then the values of x and y a...

    Text Solution

    |

  14. If A and B arę square matrices of same order such that AB = A and BA =...

    Text Solution

    |

  15. The inverse of an invertible symmetric matrix is a symmetric matrix.

    Text Solution

    |

  16. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew sym...

    Text Solution

    |

  17. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  18. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  19. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  20. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |