Home
Class 11
MATHS
If {:E(theta)=[(cos^2 theta,costhetasint...

If `{:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2theta)]:},and thetaand phi` differ by an odd multiple of `pi//2," then "E(theta)E(phi)` is a

A

null matrix

B

unit matrix

C

diagonal matrix

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( E(\theta)E(\phi) \) where \( E(\theta) \) and \( E(\phi) \) are defined as follows: \[ E(\theta) = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \] Given that \( \theta \) and \( \phi \) differ by an odd multiple of \( \frac{\pi}{2} \), we can express this as: \[ \phi = \theta + (2n + 1) \frac{\pi}{2} \] for some integer \( n \). ### Step 1: Write down \( E(\phi) \) Using the above relationship, we can find \( E(\phi) \): \[ E(\phi) = \begin{pmatrix} \cos^2(\phi) & \cos(\phi) \sin(\phi) \\ \cos(\phi) \sin(\phi) & \sin^2(\phi) \end{pmatrix} \] Substituting \( \phi = \theta + (2n + 1) \frac{\pi}{2} \): 1. **Calculate \( \cos(\phi) \)**: \[ \cos(\phi) = \cos\left(\theta + (2n + 1) \frac{\pi}{2}\right) = -\sin(\theta) \] 2. **Calculate \( \sin(\phi) \)**: \[ \sin(\phi) = \sin\left(\theta + (2n + 1) \frac{\pi}{2}\right) = \cos(\theta) \] Now substituting these into \( E(\phi) \): \[ E(\phi) = \begin{pmatrix} \cos^2(\phi) & \cos(\phi) \sin(\phi) \\ \cos(\phi) \sin(\phi) & \sin^2(\phi) \end{pmatrix} = \begin{pmatrix} \sin^2(\theta) & -\sin(\theta) \cos(\theta) \\ -\sin(\theta) \cos(\theta) & \cos^2(\theta) \end{pmatrix} \] ### Step 2: Multiply \( E(\theta) \) and \( E(\phi) \) Now we need to compute the product \( E(\theta)E(\phi) \): \[ E(\theta)E(\phi) = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{pmatrix} \] ### Step 3: Calculate the entries of the product 1. **First row, first column**: \[ \cos^2 \theta \cdot \sin^2 \theta + \cos \theta \sin \theta \cdot (-\sin \theta \cos \theta) = \cos^2 \theta \sin^2 \theta - \cos^2 \theta \sin^2 \theta = 0 \] 2. **First row, second column**: \[ \cos^2 \theta \cdot (-\sin \theta \cos \theta) + \cos \theta \sin \theta \cdot \cos^2 \theta = -\cos^3 \theta \sin \theta + \cos^3 \theta \sin \theta = 0 \] 3. **Second row, first column**: \[ \cos \theta \sin \theta \cdot \sin^2 \theta + \sin^2 \theta \cdot (-\sin \theta \cos \theta) = \cos \theta \sin^3 \theta - \sin^3 \theta \cos \theta = 0 \] 4. **Second row, second column**: \[ \cos \theta \sin \theta \cdot (-\sin \theta \cos \theta) + \sin^2 \theta \cdot \cos^2 \theta = -\cos^2 \theta \sin^2 \theta + \sin^2 \theta \cos^2 \theta = 0 \] ### Final Result Putting it all together, we have: \[ E(\theta)E(\phi) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This is a null matrix. ### Conclusion Thus, \( E(\theta)E(\phi) \) is a null matrix. ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

Prove: (cos e c\ theta+sintheta)(cos e c\ theta-sintheta)=cot^2theta+cos^2theta

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If sintheta=5sin(theta+phi) then tan(theta+phi)=

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

cos2 theta*cos(theta/(2))-cos3 theta*cos((9theta)/2)=sin5 theta*sin((5theta)/(2))

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is any mxn matrix and B is a matrix such that AB and BA are both ...

    Text Solution

    |

  2. If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(...

    Text Solution

    |

  3. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  4. If A=[(cos^(2)alpha,cos alphasin alpha),(cos alpha sin alpha, sin^(2)a...

    Text Solution

    |

  5. The matrix X in the equation AX=B, such that A={:[(1,3),(0,1)]:}andB={...

    Text Solution

    |

  6. If I=[1 0 0 1] , J=[0 1-1 0] and B=[costhetasintheta-sinthetacostheta]...

    Text Solution

    |

  7. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  8. If A is an orthogonal matrix then A^(-1) equals a.A^T b. A c. A^2 ...

    Text Solution

    |

  9. If D=diag(d1,d2,d3,…,dn)" where "d ne 0" for all " I = 1,2,…,n," then ...

    Text Solution

    |

  10. If {:A=[(ab,b^2),(-a^2,-ab)]:}, then A is

    Text Solution

    |

  11. If A is a 3xx3 matrix and B is a matrix such that A^TB and BA^(T) are ...

    Text Solution

    |

  12. Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}, then the values of x and y a...

    Text Solution

    |

  13. If A and B arę square matrices of same order such that AB = A and BA =...

    Text Solution

    |

  14. The inverse of an invertible symmetric matrix is a symmetric matrix.

    Text Solution

    |

  15. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew sym...

    Text Solution

    |

  16. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  17. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  18. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  19. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  20. If A = [a(ij)] is a skew-symmetric matrix of order n, then a(ij)=

    Text Solution

    |