Home
Class 11
MATHS
If D=diag(d1,d2,d3,…,dn)" where "d ne 0"...

If `D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1)`is equal to

A

D

B

`diag(d_1^(-1)d_2^(-1),...,d_n^(-1))`

C

In

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the diagonal matrix \( D = \text{diag}(d_1, d_2, d_3, \ldots, d_n) \) where \( d_i \neq 0 \) for all \( i = 1, 2, \ldots, n \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Diagonal Matrix**: The matrix \( D \) is a diagonal matrix, which means all off-diagonal elements are zero. It can be represented as: \[ D = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix} \] 2. **Finding the Inverse of a Diagonal Matrix**: The inverse of a diagonal matrix can be found by taking the reciprocal of each of the diagonal elements. Thus, the inverse \( D^{-1} \) will be: \[ D^{-1} = \text{diag}\left(\frac{1}{d_1}, \frac{1}{d_2}, \frac{1}{d_3}, \ldots, \frac{1}{d_n}\right) \] 3. **Writing the Inverse Matrix**: Therefore, we can write the inverse matrix explicitly as: \[ D^{-1} = \begin{pmatrix} \frac{1}{d_1} & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{d_2} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{d_3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1}{d_n} \end{pmatrix} \] 4. **Conclusion**: Thus, we conclude that the inverse of the diagonal matrix \( D \) is: \[ D^{-1} = \text{diag}\left(d_1^{-1}, d_2^{-1}, d_3^{-1}, \ldots, d_n^{-1}\right) \] ### Final Answer: The correct answer is option B: \( D^{-1} = \text{diag}(d_1^{-1}, d_2^{-1}, d_3^{-1}, \ldots, d_n^{-1}) \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If D=d i ag[d_1, d_2, d_n] , then prove that f(D)=d i ag[f(d_1),f(d_2), ,f(d_n)],w h e r ef(x) is a polynomial with scalar coefficient.

If D=d i ag[d_1, d_2, d_n] , then prove that f(D)=d i ag[f(d_1),f(d_2), ,f(d_n)],w h e r ef(x) is a polynomial with scalar coefficient.

Let f(n)=Sigma_(r=1)^(10n)(6+rd) and g(n)=Sigma_(r=1)^(n)(6+rd) , where n in N, d ne 0. If (f(n))/(g(n)) is independent of n, then d is equal to

If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ,A^(-1) is equal to a. [[a+i b,-c+i d],[c+i d, a-i b]] b. [[a-i b,-c-i d],[-c-i d, a+i b]] c. [[a+i b,-c-i d],[-c+i d, a-i b]] d. none of these

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(11+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

four fair dice D_1, D_2,D_3 and D_4 each having six faces numbered 1,2,3,4,5 and 6 are rolled simultaneously. The probability that D_4 shows a number appearing on one of D_1,D_2,D_3 is

"I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C (where b & d are coprime integer) then b + d equals to.

If A=d i ag(abc), show that A^n=d i ag(a^nb^nc^n) for all positive integer n .

If D_1 and D_2 are diagonal matices of order 3xx3 then (A) D_1^n is a diagonal matrix (B) D_1D_2=D_2D_1 (C) D_1^2+D_2^2 is diagonal matrix (D) D_1D_2 is a diagonal matix

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  2. If A is an orthogonal matrix then A^(-1) equals a.A^T b. A c. A^2 ...

    Text Solution

    |

  3. If D=diag(d1,d2,d3,…,dn)" where "d ne 0" for all " I = 1,2,…,n," then ...

    Text Solution

    |

  4. If {:A=[(ab,b^2),(-a^2,-ab)]:}, then A is

    Text Solution

    |

  5. If A is a 3xx3 matrix and B is a matrix such that A^TB and BA^(T) are ...

    Text Solution

    |

  6. Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}, then the values of x and y a...

    Text Solution

    |

  7. If A and B arę square matrices of same order such that AB = A and BA =...

    Text Solution

    |

  8. The inverse of an invertible symmetric matrix is a symmetric matrix.

    Text Solution

    |

  9. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew sym...

    Text Solution

    |

  10. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  11. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  12. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  13. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  14. If A = [a(ij)] is a skew-symmetric matrix of order n, then a(ij)=

    Text Solution

    |

  15. If A and B are symmetric matrices of the same order, write whether ...

    Text Solution

    |

  16. If A and B are square matrices of the same order such that A B=B A ...

    Text Solution

    |

  17. The trace of the matrix A=[1-5 7 0 7 9 11 8 9] is (a) 17 (b) 25 ...

    Text Solution

    |

  18. If A is a skew- symmetric matrix, then trace of A is: 1.) 1 2.) -...

    Text Solution

    |

  19. If {:A=[(1,x),(x^7,4y)],B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:}, th...

    Text Solution

    |

  20. If A is a square matrix of order n xx n and k is a scalar, then adj (k...

    Text Solution

    |