Home
Class 11
MATHS
Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}...

Let `{:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}`, then the values of x and y are

A

`x=-1/11,y=2/11`

B

`x=-1/11,y=-2/11`

C

`x=1/11,y=2/11`

D

`x=1/11,y=-2/11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) such that \( A^{-1} = xA + yI \), where \( A = \begin{pmatrix} 1 & 2 \\ -5 & 1 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Find the Characteristic Polynomial of Matrix \( A \)**: The characteristic polynomial is given by \( \det(A - \lambda I) = 0 \). \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 2 \\ -5 & 1 - \lambda \end{pmatrix} \] The determinant is calculated as follows: \[ \det(A - \lambda I) = (1 - \lambda)(1 - \lambda) - (-5)(2) = (1 - \lambda)^2 + 10 \] Expanding this gives: \[ (1 - \lambda)^2 + 10 = \lambda^2 - 2\lambda + 11 \] 2. **Apply Cayley-Hamilton Theorem**: According to the Cayley-Hamilton theorem, a matrix satisfies its own characteristic equation: \[ A^2 - 2A + 11I = 0 \] Rearranging this gives: \[ A^2 = 2A - 11I \] 3. **Multiply by \( A^{-1} \)**: To express \( A^{-1} \), we can multiply the entire equation by \( A^{-1} \): \[ A^{-1}A^2 = A^{-1}(2A - 11I) \] This simplifies to: \[ A = 2I - 11A^{-1} \] Rearranging gives: \[ 11A^{-1} = 2I - A \] Thus, \[ A^{-1} = \frac{2I - A}{11} \] 4. **Express \( A^{-1} \) in terms of \( A \) and \( I \)**: We can rewrite \( A^{-1} \): \[ A^{-1} = -\frac{1}{11}A + \frac{2}{11}I \] 5. **Identify \( x \) and \( y \)**: From the expression \( A^{-1} = xA + yI \), we can compare coefficients: - \( x = -\frac{1}{11} \) - \( y = \frac{2}{11} \) ### Final Answer: The values of \( x \) and \( y \) are: \[ x = -\frac{1}{11}, \quad y = \frac{2}{11} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,2),(2,3):}] and A^(2)-xA=I_(2) then the value of x is

Let cos(2 tan^(-1) x)=1/2 then the value of x is

Let |(3,y), (x,1)| = |(3,2), (4,1)| . Find possible values of x and y are natural numbers.

Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)] . The two matrices X and Y are such that XA=B and AY=B , then find the matrix 3(X+Y)

If (x/3+1,y-2/3)= (5/3,1/3) , find the value of x and y.

If x [2 3]+y[-1 1]=[10 5] , find the value of x and y

If (x/3+1,y-2/3)=(5/3,1/3) , find the values of x and y.

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If {:A=[(ab,b^2),(-a^2,-ab)]:}, then A is

    Text Solution

    |

  2. If A is a 3xx3 matrix and B is a matrix such that A^TB and BA^(T) are ...

    Text Solution

    |

  3. Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}, then the values of x and y a...

    Text Solution

    |

  4. If A and B arę square matrices of same order such that AB = A and BA =...

    Text Solution

    |

  5. The inverse of an invertible symmetric matrix is a symmetric matrix.

    Text Solution

    |

  6. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew sym...

    Text Solution

    |

  7. If A is a symmetric matrixfand n in N, then A^(n) is

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  9. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  10. If A is a skew-symmetric matrix and n is odd positive integer, then A^...

    Text Solution

    |

  11. If A = [a(ij)] is a skew-symmetric matrix of order n, then a(ij)=

    Text Solution

    |

  12. If A and B are symmetric matrices of the same order, write whether ...

    Text Solution

    |

  13. If A and B are square matrices of the same order such that A B=B A ...

    Text Solution

    |

  14. The trace of the matrix A=[1-5 7 0 7 9 11 8 9] is (a) 17 (b) 25 ...

    Text Solution

    |

  15. If A is a skew- symmetric matrix, then trace of A is: 1.) 1 2.) -...

    Text Solution

    |

  16. If {:A=[(1,x),(x^7,4y)],B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:}, th...

    Text Solution

    |

  17. If A is a square matrix of order n xx n and k is a scalar, then adj (k...

    Text Solution

    |

  18. If A is a singular amtrix, then adj A is

    Text Solution

    |

  19. If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

    Text Solution

    |

  20. If A is a singular amtrix, then adj A is

    Text Solution

    |