Home
Class 11
MATHS
If {:A=[(1,x),(x^7,4y)],B=[(-3,1),(1,0)]...

If `{:A=[(1,x),(x^7,4y)],B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:}`, then the values of x and y are respectively

A

(1,1)

B

(-1,1)

C

(1,0)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given the matrices \( A \) and \( B \) and the condition that the adjoint of \( A + B \) equals the identity matrix. Let's break down the solution step by step. ### Step 1: Define the matrices We have: \[ A = \begin{pmatrix} 1 & x \\ x^7 & 4y \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 2: Find the adjoint of matrix \( A \) The adjoint of a matrix is the transpose of its cofactor matrix. The cofactor matrix for \( A \) is calculated as follows: - \( C_{11} = \text{det} \begin{pmatrix} 4y \end{pmatrix} = 4y \) - \( C_{12} = -\text{det} \begin{pmatrix} x^7 \end{pmatrix} = -x^7 \) - \( C_{21} = -\text{det} \begin{pmatrix} x \end{pmatrix} = -x \) - \( C_{22} = \text{det} \begin{pmatrix} 1 \end{pmatrix} = 1 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} 4y & -x^7 \\ -x & 1 \end{pmatrix} \] Now, taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} 4y & -x \\ -x^7 & 1 \end{pmatrix} \] ### Step 3: Calculate \( A + B \) Now we compute \( A + B \): \[ A + B = \begin{pmatrix} 1 & x \\ x^7 & 4y \end{pmatrix} + \begin{pmatrix} -3 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 - 3 & x + 1 \\ x^7 + 1 & 4y + 0 \end{pmatrix} = \begin{pmatrix} -2 & x + 1 \\ x^7 + 1 & 4y \end{pmatrix} \] ### Step 4: Find the adjoint of \( A + B \) The adjoint of \( A + B \) can be calculated similarly: \[ \text{adj}(A + B) = \begin{pmatrix} 4y & -(x + 1) \\ -(x^7 + 1) & -2 \end{pmatrix} \] ### Step 5: Set the adjoint equal to the identity matrix We know that: \[ \text{adj}(A + B) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( 4y = 1 \) 2. \( -(x + 1) = 0 \) 3. \( -(x^7 + 1) = 0 \) 4. \( -2 = 1 \) (which is not valid, hence we focus on the first three equations) ### Step 6: Solve the equations From the first equation: \[ 4y = 1 \implies y = \frac{1}{4} \] From the second equation: \[ -(x + 1) = 0 \implies x + 1 = 0 \implies x = -1 \] From the third equation: \[ -(x^7 + 1) = 0 \implies x^7 + 1 = 0 \implies x^7 = -1 \] Since \( x = -1 \), we check: \[ (-1)^7 = -1 \quad \text{(True)} \] ### Conclusion Thus, the values of \( x \) and \( y \) are: \[ x = -1, \quad y = \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If [[(x+3y),y],[7-x,4]]=[(4,-1),(0,1)], find the values of x and y.

If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)]:} ,then x + y =

If A=[{:(,2,x),(,0,1):}] and B=[{:(,4,36),(,0,1):}] , find the value of x, given that A^2=B

If A=[{:(,3,x),(,0,1):}] and B=[{:(,9,16),(,0,-y):}] find x and y when A^2=B .

If 3^(4x)=(81)^(-1) and 10^(1/y)=0. 0001 , find the value of 2^(-x+4y)

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 is

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. The trace of the matrix A=[1-5 7 0 7 9 11 8 9] is (a) 17 (b) 25 ...

    Text Solution

    |

  2. If A is a skew- symmetric matrix, then trace of A is: 1.) 1 2.) -...

    Text Solution

    |

  3. If {:A=[(1,x),(x^7,4y)],B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:}, th...

    Text Solution

    |

  4. If A is a square matrix of order n xx n and k is a scalar, then adj (k...

    Text Solution

    |

  5. If A is a singular amtrix, then adj A is

    Text Solution

    |

  6. If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

    Text Solution

    |

  7. If A is a singular amtrix, then adj A is

    Text Solution

    |

  8. If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the v...

    Text Solution

    |

  9. If A=[[1,1],[1,1]] ,prove that A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)...

    Text Solution

    |

  10. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  11. If A is an invertible square matrix; then adj A^T = (adjA)^T

    Text Solution

    |

  12. If A=[[1,3] , [3,4]] and A^2-kA-5I2=0 then k=

    Text Solution

    |

  13. If A=[a(ij)] is a scalar matrix, then trace of A is

    Text Solution

    |

  14. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  15. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  16. If A=[a(ij)] is a scalar matrix of order nxxn and k is a scalar, then ...

    Text Solution

    |

  17. If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],...

    Text Solution

    |

  18. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  19. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  20. If [(1,-tantheta),(tantheta,1)][(1,tantheta),(-tantheta,1)]^(-1)=[(a,-...

    Text Solution

    |