Home
Class 11
MATHS
If A=[(cosx,sinx),(-sinx,cosx)] and A.(a...

If `A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)]` then the value of `k` is

A

`sinx cos x`

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the matrix \( A \) and the relationship \( A \cdot (\text{adj} A) = k \cdot I \), where \( I \) is the identity matrix. Given: \[ A = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \] ### Step 1: Find the adjoint of matrix \( A \) The adjoint of a matrix is the transpose of its cofactor matrix. For a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), the adjoint is given by: \[ \text{adj} A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( a = \cos x \) - \( b = \sin x \) - \( c = -\sin x \) - \( d = \cos x \) Thus, the adjoint of \( A \) is: \[ \text{adj} A = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \] ### Step 2: Compute \( A \cdot (\text{adj} A) \) Now we compute the product \( A \cdot (\text{adj} A) \): \[ A \cdot (\text{adj} A) = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \cdot \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \] Calculating the elements of the product: 1. First row, first column: \[ \cos x \cdot \cos x + \sin x \cdot \sin x = \cos^2 x + \sin^2 x = 1 \] 2. First row, second column: \[ \cos x \cdot (-\sin x) + \sin x \cdot \cos x = -\cos x \sin x + \sin x \cos x = 0 \] 3. Second row, first column: \[ -\sin x \cdot \cos x + \cos x \cdot \sin x = -\sin x \cos x + \cos x \sin x = 0 \] 4. Second row, second column: \[ -\sin x \cdot (-\sin x) + \cos x \cdot \cos x = \sin^2 x + \cos^2 x = 1 \] Thus, we have: \[ A \cdot (\text{adj} A) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 3: Relate to \( k \cdot I \) From the problem statement, we have: \[ A \cdot (\text{adj} A) = k \cdot I \] Substituting our result: \[ I = k \cdot I \] ### Step 4: Solve for \( k \) Since \( I \) is the identity matrix, we can equate: \[ 1 = k \] Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(cosx,sinx),(-sinx,cosx)] then find |A|

If A=[[cosx,-sinx],[sinx,cosx]] , find A A^T

Expand | (cosx, -sinx),(sinx , cosx)|

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

int(1+sinx)/(sinx(1+cosx))dx

int(1+sinx)/(sinx(1+cosx))dx

If A=[(2,0,0),(0,cos,sinx),(0,-sinx,cosx)] then (AdjA)^-1= (A) 1/2A (B) A (C) 2A (D) 4A

A=|{:(cosx,-sinx),(sinx,cosx):}| , then show that (A^(-1))^(-1)=A.

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

If int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7 , then the value of k is

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

    Text Solution

    |

  2. If A is a singular amtrix, then adj A is

    Text Solution

    |

  3. If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the v...

    Text Solution

    |

  4. If A=[[1,1],[1,1]] ,prove that A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)...

    Text Solution

    |

  5. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  6. If A is an invertible square matrix; then adj A^T = (adjA)^T

    Text Solution

    |

  7. If A=[[1,3] , [3,4]] and A^2-kA-5I2=0 then k=

    Text Solution

    |

  8. If A=[a(ij)] is a scalar matrix, then trace of A is

    Text Solution

    |

  9. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  10. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  11. If A=[a(ij)] is a scalar matrix of order nxxn and k is a scalar, then ...

    Text Solution

    |

  12. If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],...

    Text Solution

    |

  13. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  14. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  15. If [(1,-tantheta),(tantheta,1)][(1,tantheta),(-tantheta,1)]^(-1)=[(a,-...

    Text Solution

    |

  16. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  17. If a matrix A is such that 3\ A^3+2\ A^2+5\ A+I=0 , then A^(-1) is equ...

    Text Solution

    |

  18. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  19. If A is an invertible matrix, then which of the following is correct

    Text Solution

    |

  20. Which of the following is/are incorrect? (i) adjoint of a symmetri...

    Text Solution

    |