Home
Class 11
MATHS
If A=[[1,1],[1,1]] ,prove that A^n=[[2^(...

If `A=[[1,1],[1,1]]` ,prove that `A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)]]`, for all positive integers n.

A

`2^nA`

B

`2^(n-1)A`

C

nA

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( A^n = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{bmatrix} \) for the matrix \( A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \), we will calculate the first few powers of \( A \) and observe a pattern. ### Step 1: Calculate \( A^1 \) \[ A^1 = A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \] ### Step 2: Calculate \( A^2 \) \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) Thus, \[ A^2 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \] ### Step 3: Calculate \( A^3 \) \[ A^3 = A^2 \cdot A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 1 + 2 \cdot 1 = 4 \) - First row, second column: \( 2 \cdot 1 + 2 \cdot 1 = 4 \) - Second row, first column: \( 2 \cdot 1 + 2 \cdot 1 = 4 \) - Second row, second column: \( 2 \cdot 1 + 2 \cdot 1 = 4 \) Thus, \[ A^3 = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \] ### Step 4: Calculate \( A^4 \) \[ A^4 = A^3 \cdot A = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 4 \cdot 1 + 4 \cdot 1 = 8 \) - First row, second column: \( 4 \cdot 1 + 4 \cdot 1 = 8 \) - Second row, first column: \( 4 \cdot 1 + 4 \cdot 1 = 8 \) - Second row, second column: \( 4 \cdot 1 + 4 \cdot 1 = 8 \) Thus, \[ A^4 = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix} \] ### Step 5: Observe the Pattern From the calculations: - \( A^1 = \begin{bmatrix} 2^{1-1} & 2^{1-1} \\ 2^{1-1} & 2^{1-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \) - \( A^2 = \begin{bmatrix} 2^{2-1} & 2^{2-1} \\ 2^{2-1} & 2^{2-1} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \) - \( A^3 = \begin{bmatrix} 2^{3-1} & 2^{3-1} \\ 2^{3-1} & 2^{3-1} \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \) - \( A^4 = \begin{bmatrix} 2^{4-1} & 2^{4-1} \\ 2^{4-1} & 2^{4-1} \end{bmatrix} = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix} \) ### Conclusion We can see that the pattern holds true, and we can generalize this to say that for any positive integer \( n \): \[ A^n = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{bmatrix} \] Thus, we have proved that \( A^n = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{bmatrix} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[[3,-4],[1,-1]] , then prove that A^n=[[1+2n,-4n],[n,1-2n]] , where n is any positive integer.

If A=[(a, b),(0, 1)] , prove that A^n=[(a^n,b((a^n-1)/(a-1))),(0 ,1)] for every positive integer n .

If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive integers ndot

Prove the following by principle of mathematical induction If A=[[3,-4] , [1,-1]] , then A^n=[[1+2n, -4n] , [n, 1-2n]] for every positive integer n

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that: n !(n+2)=n !+(n+1)!

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.

Prove that : 1+2+3++n=(n(n+1))/2

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is a singular amtrix, then adj A is

    Text Solution

    |

  2. If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the v...

    Text Solution

    |

  3. If A=[[1,1],[1,1]] ,prove that A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)...

    Text Solution

    |

  4. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  5. If A is an invertible square matrix; then adj A^T = (adjA)^T

    Text Solution

    |

  6. If A=[[1,3] , [3,4]] and A^2-kA-5I2=0 then k=

    Text Solution

    |

  7. If A=[a(ij)] is a scalar matrix, then trace of A is

    Text Solution

    |

  8. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  9. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  10. If A=[a(ij)] is a scalar matrix of order nxxn and k is a scalar, then ...

    Text Solution

    |

  11. If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],...

    Text Solution

    |

  12. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  13. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  14. If [(1,-tantheta),(tantheta,1)][(1,tantheta),(-tantheta,1)]^(-1)=[(a,-...

    Text Solution

    |

  15. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  16. If a matrix A is such that 3\ A^3+2\ A^2+5\ A+I=0 , then A^(-1) is equ...

    Text Solution

    |

  17. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  18. If A is an invertible matrix, then which of the following is correct

    Text Solution

    |

  19. Which of the following is/are incorrect? (i) adjoint of a symmetri...

    Text Solution

    |

  20. If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed ...

    Text Solution

    |