Home
Class 11
MATHS
If A=[[1,3] , [3,4]] and A^2-kA-5I2=0 th...

If `A=[[1,3] , [3,4]]` and `A^2-kA-5I_2=0` then `k=`

A

3

B

5

C

7

D

-7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation \( A^2 - kA - 5I_2 = 0 \) given the matrix \( A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 1 \cdot 1 + 3 \cdot 3 = 1 + 9 = 10 \] - First row, second column: \[ 1 \cdot 3 + 3 \cdot 4 = 3 + 12 = 15 \] - Second row, first column: \[ 3 \cdot 1 + 4 \cdot 3 = 3 + 12 = 15 \] - Second row, second column: \[ 3 \cdot 3 + 4 \cdot 4 = 9 + 16 = 25 \] Thus, we have: \[ A^2 = \begin{bmatrix} 10 & 15 \\ 15 & 25 \end{bmatrix} \] ### Step 2: Define \( I_2 \) The identity matrix \( I_2 \) of order 2 is: \[ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] ### Step 3: Calculate \( 5I_2 \) Now, we multiply \( I_2 \) by 5: \[ 5I_2 = 5 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \] ### Step 4: Substitute into the equation We substitute \( A^2 \), \( kA \), and \( 5I_2 \) into the equation \( A^2 - kA - 5I_2 = 0 \): \[ \begin{bmatrix} 10 & 15 \\ 15 & 25 \end{bmatrix} - k \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = 0 \] This simplifies to: \[ \begin{bmatrix} 10 - k - 5 & 15 - 3k \\ 15 - 3k & 25 - 4k - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] ### Step 5: Set up equations From the matrix equation, we set up the following equations: 1. \( 10 - k - 5 = 0 \) 2. \( 15 - 3k = 0 \) 3. \( 25 - 4k - 5 = 0 \) ### Step 6: Solve the equations 1. From the first equation: \[ 10 - k - 5 = 0 \implies k = 5 \] 2. From the second equation: \[ 15 - 3k = 0 \implies 3k = 15 \implies k = 5 \] 3. From the third equation: \[ 25 - 4k - 5 = 0 \implies 20 - 4k = 0 \implies 4k = 20 \implies k = 5 \] All equations give us \( k = 5 \). ### Final Answer Thus, the value of \( k \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,3),(3,4)] and A^2-xA-I=0 then find x.

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

If A=[(3,1),(1,-3)] be such that A^(-1)=kA then the value of k is

A=[{:(1,3),(2,1):}] satisfy the equation A^2-kA-5I=0 , then find k and also A^(-1) .

Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0 , then B is equal to

If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal to : a) 3I b) -5I c) 5I d) none of these

If A[{:(2,3),(1,2):}] satisfy the equation A^2-kA+I=0 , then find k also A^(-1) .

If A A=[[3,-2],[ 4,-2]] and I=[[1, 0],[ 0, 1]] , find k so that A^2=k A-2I .

Let A=[(1,2),(-1,3)] .If A^6=kA-205I then then numerical quantity of k-40 should be

If [[1,2],[3,4]] [[3,1],[2,5]]=[[7,11],[k,23]], then write the value of k.

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  2. If A is an invertible square matrix; then adj A^T = (adjA)^T

    Text Solution

    |

  3. If A=[[1,3] , [3,4]] and A^2-kA-5I2=0 then k=

    Text Solution

    |

  4. If A=[a(ij)] is a scalar matrix, then trace of A is

    Text Solution

    |

  5. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  6. If A=[a(i j)] is a scalar matrix of order nxxn such that a(i i)=k f...

    Text Solution

    |

  7. If A=[a(ij)] is a scalar matrix of order nxxn and k is a scalar, then ...

    Text Solution

    |

  8. If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],...

    Text Solution

    |

  9. If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0...

    Text Solution

    |

  10. Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[...

    Text Solution

    |

  11. If [(1,-tantheta),(tantheta,1)][(1,tantheta),(-tantheta,1)]^(-1)=[(a,-...

    Text Solution

    |

  12. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  13. If a matrix A is such that 3\ A^3+2\ A^2+5\ A+I=0 , then A^(-1) is equ...

    Text Solution

    |

  14. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  15. If A is an invertible matrix, then which of the following is correct

    Text Solution

    |

  16. Which of the following is/are incorrect? (i) adjoint of a symmetri...

    Text Solution

    |

  17. If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed ...

    Text Solution

    |

  18. If for matrix A,A^(2)+l=0, where l is the identity matrix, then A equa...

    Text Solution

    |

  19. If A=[a(ij)](mxxn) is a matrix of rank r then (A) r=min{m,n} (B) rlemi...

    Text Solution

    |

  20. If In is the identity matrix of order n, then rank of In is

    Text Solution

    |