Home
Class 11
MATHS
Let A=[a(ij)](mxxn) be a matrix such tha...

Let `A=[a_(ij)]_(mxxn)` be a matrix such that `a_(ij)=1` for all I,j. Then ,

A

rank (A) gt 1

B

rank (A) = 1

C

rank (A) = m

D

rank (A) = n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A = [a_{ij}]_{m \times n} \) where each element \( a_{ij} = 1 \) for all \( i, j \). ### Step-by-step Solution: 1. **Define the Matrix**: The matrix \( A \) is defined as: \[ A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \] This matrix has \( m \) rows and \( n \) columns, and every element is equal to 1. **Hint**: Visualize the structure of the matrix to understand its uniformity. 2. **Identify the Rows and Columns**: Since every element of the matrix is 1, all rows are identical, and all columns are identical. **Hint**: Think about what it means for rows and columns to be identical in terms of linear dependence. 3. **Determine the Rank**: The rank of a matrix is defined as the maximum number of linearly independent rows or columns. Since all rows are identical, they are linearly dependent. The same applies to the columns. **Hint**: Recall that if all rows (or columns) are multiples of each other, the rank is determined by the number of unique rows or columns. 4. **Conclusion about the Rank**: In this case, there is only one unique row (or column), which is the row (or column) of all ones. Therefore, the rank of the matrix \( A \) is 1. **Hint**: Consider the implications of having only one unique row or column in terms of the rank. ### Final Answer: The rank of the matrix \( A \) is 1.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let A=([a_(i j)])_(3x3) be a matrix such that a_(11)=a_(33)=2 and all the other elements a_(i j)=1 A^(-1)= (a) A^2+5A-I (b) A^2-5A+5I (c) A^2+5A-5I (d) A^2+5A+5I

A=[a_(ij)]_(mxxn) is a square matrix, if

A matrix A=[a_(ij)]_(mxxn) is

Let A=[a_(ij)]_(5xx5) is a matrix such that a_(ij)={(3,AA i= j),(0,Aai ne j):} . If |(adj(adjA))/(3)|=(sqrt3)^(lambda), then lambda is equal to (where, adj(M) represents the adjoint matrix of matrix M)

Let A=[a_(ij)]_(3xx3) be a square matrix such that A A^(T)=4I, |A| lt 0 . If |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|=5lambda|A+I|. Then lambda is equal to

Statement 1 : Matrix [{:(a,0,0,0),(0,b,0,0),(0,0,c,0):}] is a diagonal matrix. Statement 2 : If A = [a_(ij)] is a square matrix such that a_(ij)=0AAi ne j , then A is called a diagonal matrix.

Let A=([a_(i j)])_(3xx3) be a matrix such that AA^T=4Ia n da_(i j)+2c_(i j)=0,w h e r ec_(i j) is the cofactor of a_(i j)a n dI is the unit matrix of order 3. |a_(11)+4a_(12)a_(13)a_(21)a_(22)+4a_(23)a_(31)a_(32)a_(33)+4|+5lambda|a_(11)+1a_(12)a_(13)a_(21)a_(22)+1a_(23)a_(31)a_(32)a_(33)+1|=0 then the value of 10lambda is _______.

Let A=[a_(ij)] be a square matrix of order n such that {:a_(ij)={(0," if i ne j),(i,if i=j):} Statement -2 : The inverse of A is the matrix B=[b_(ij)] such that {:b_(ij)={(0," if i ne j),(1/i,if i=j):} Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is an orthogonal matrix, then

    Text Solution

    |

  2. Let A be a non-singular square matrix of order n. Then; |adjA| =

    Text Solution

    |

  3. Let A=[a(ij)](n xxn) be a square matrix and let c(ij) be cofactor of...

    Text Solution

    |

  4. If A is a non-singlular square matrix of order n, then the rank of A i...

    Text Solution

    |

  5. If A is a matrix such that there exists a square submatrix of order r ...

    Text Solution

    |

  6. Let A be a matrix of rank r. Then,

    Text Solution

    |

  7. Let A=[a(ij)](mxxn) be a matrix such that a(ij)=1 for all I,j. Then ,

    Text Solution

    |

  8. If A is a non-zero column matrix of order mxx1 and B is a non-zero row...

    Text Solution

    |

  9. The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:}, ...

    Text Solution

    |

  10. If A is an invertible matrix, then "det" (A -1) is equal to

    Text Solution

    |

  11. If A and B are two matrices such that rank of A = m and rank of B = n...

    Text Solution

    |

  12. If A=[3 4 2 4] , B=[-2-2 0-1] , then (A+B)^(-1) (a) is a skew-symmetr...

    Text Solution

    |

  13. Let A=[a0 0 0a0 0 0a] , then A^n is equal to [a^n0 0 0a^n0 0 0a] (b) [...

    Text Solution

    |

  14. If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim(x>oo)1/nA^n i...

    Text Solution

    |

  15. If A=[[1, 2, x], [0 ,1 ,0],[ 0, 0, 1]] and B=[[1,-2,y],[0, 1, 0 ],[0...

    Text Solution

    |

  16. If A=[{:(,1,a),(,0,1):}] then find underset(n-oo)(lim)(1)/(n)A^(n)

    Text Solution

    |

  17. If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(...

    Text Solution

    |

  18. If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," ...

    Text Solution

    |

  19. If matrix A has 180 elements, then the number of possible orders of A ...

    Text Solution

    |

  20. A 3xx3 matrix A, with 1st row elements as 2,-1,-1 respectively, is mod...

    Text Solution

    |