Home
Class 11
MATHS
Let A=[a0 0 0a0 0 0a] , then A^n is equa...

Let `A=[a0 0 0a0 0 0a]` , then `A^n` is equal to `[a^n0 0 0a^n0 0 0a]` (b) `[a^n0 0 0a0 0 0a]` (c) `[a^n0 0 0a^n0 0 0a^n]` (d) `[n a0 0 0n a0 0 0n a]`

A

`{:[(a^n,0,0),(0,a^n,0),(0,0,a)]:}`

B

`{:[(a^n,0,0),(0,a,0),(0,0,a)]:}`

C

`{:[(a^n,0,0),(0,a^n,0),(0,0,a^n)]:}`

D

`{:[(na,0,0),(0,na,0),(0,0,na)]:}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let A=[(a,0, 0),( 0,a,0),( 0, 0,a)] , then A^n is equal to [(a^n,0, 0),( 0,a^n,0),(0, 0,a)] (b) [(a^n,0 ,0),( 0,a,0 ),(0, 0,a)] (c) [(a^n,0, 0),( 0,a^n,0),( 0, 0,a^n)] (d) [(n a,0, 0),( 0,n a,0 ),(0, 0,n a)]

If A=[(i,0), (0,i)],\ n in N , then A^(4n) equals [(0,i), (i,0)] (b) [(0 ,0) ,(0, 0)] (c) [(1, 0) ,(0, 1)] (d) [(0,i) ,(i,0)]

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

In a triangle A B C , if B=30^0a n d\ c=sqrt(3)\ b , then A can be equal to (a) 45^0 (b) 60^0 (c) 90^0 (d) 120^0

Prove that: \ t a n 20^0t a n 30^0t a n 40^0t a n 80^0=1

Prove that: t a n 70^0=t a n 20^0+2t a n 50^0dot

Prove that: t a n 70^0=t a n 20^0+2t a n 50^0dot

In a circle, the major arc is 3 times the minor arc. The corresponding central angles and the degree measures of two arcs are (a) 90^0a n d\ 270^0 (b) 90^0a n d\ 90^0 (c) 270^0a n d\ 90^0 (d) 60^0a n d\ 210^0

In Figure, if lines l\ a n d\ m are parallel lines, then x= (a) 70^0 (b) 100^0 (c) 40^0 (d) 30^0

Prove that: t a n 225^0cot 405^0+t a n 765^0cot 675^0=\ 0

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is an orthogonal matrix, then

    Text Solution

    |

  2. Let A be a non-singular square matrix of order n. Then; |adjA| =

    Text Solution

    |

  3. Let A=[a(ij)](n xxn) be a square matrix and let c(ij) be cofactor of...

    Text Solution

    |

  4. If A is a non-singlular square matrix of order n, then the rank of A i...

    Text Solution

    |

  5. If A is a matrix such that there exists a square submatrix of order r ...

    Text Solution

    |

  6. Let A be a matrix of rank r. Then,

    Text Solution

    |

  7. Let A=[a(ij)](mxxn) be a matrix such that a(ij)=1 for all I,j. Then ,

    Text Solution

    |

  8. If A is a non-zero column matrix of order mxx1 and B is a non-zero row...

    Text Solution

    |

  9. The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:}, ...

    Text Solution

    |

  10. If A is an invertible matrix, then "det" (A -1) is equal to

    Text Solution

    |

  11. If A and B are two matrices such that rank of A = m and rank of B = n...

    Text Solution

    |

  12. If A=[3 4 2 4] , B=[-2-2 0-1] , then (A+B)^(-1) (a) is a skew-symmetr...

    Text Solution

    |

  13. Let A=[a0 0 0a0 0 0a] , then A^n is equal to [a^n0 0 0a^n0 0 0a] (b) [...

    Text Solution

    |

  14. If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim(x>oo)1/nA^n i...

    Text Solution

    |

  15. If A=[[1, 2, x], [0 ,1 ,0],[ 0, 0, 1]] and B=[[1,-2,y],[0, 1, 0 ],[0...

    Text Solution

    |

  16. If A=[{:(,1,a),(,0,1):}] then find underset(n-oo)(lim)(1)/(n)A^(n)

    Text Solution

    |

  17. If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(...

    Text Solution

    |

  18. If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," ...

    Text Solution

    |

  19. If matrix A has 180 elements, then the number of possible orders of A ...

    Text Solution

    |

  20. A 3xx3 matrix A, with 1st row elements as 2,-1,-1 respectively, is mod...

    Text Solution

    |