Home
Class 11
MATHS
If the matrix {:[(a,b),(c,d)]:} is commu...

If the matrix `{:[(a,b),(c,d)]:}` is commutative with matrix `{:[(1,1),(0,1)]:}`, then

A

`a=0,b=c`

B

`b=0,c=d`

C

`c=0,d=a`

D

`d=0,a=b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditions under which the matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is commutative with the matrix \( B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). This means that \( A \cdot B = B \cdot A \). ### Step-by-Step Solution: 1. **Matrix Multiplication \( A \cdot B \)**: \[ A \cdot B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] To perform this multiplication, we calculate each element: - First row, first column: \( a \cdot 1 + b \cdot 0 = a \) - First row, second column: \( a \cdot 1 + b \cdot 1 = a + b \) - Second row, first column: \( c \cdot 1 + d \cdot 0 = c \) - Second row, second column: \( c \cdot 1 + d \cdot 1 = c + d \) Thus, \[ A \cdot B = \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} \] 2. **Matrix Multiplication \( B \cdot A \)**: \[ B \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Again, we calculate each element: - First row, first column: \( 1 \cdot a + 1 \cdot c = a + c \) - First row, second column: \( 1 \cdot b + 1 \cdot d = b + d \) - Second row, first column: \( 0 \cdot a + 1 \cdot c = c \) - Second row, second column: \( 0 \cdot b + 1 \cdot d = d \) Thus, \[ B \cdot A = \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} \] 3. **Setting the Products Equal**: Since \( A \cdot B = B \cdot A \), we equate the two resulting matrices: \[ \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} \] This gives us the following equations: - From the first row, first column: \( a = a + c \) - From the first row, second column: \( a + b = b + d \) - From the second row, first column: \( c = c \) (this is always true) - From the second row, second column: \( c + d = d \) 4. **Solving the Equations**: - From \( a = a + c \), we can simplify to \( c = 0 \). - From \( a + b = b + d \), we simplify to \( a = d \). - From \( c + d = d \), substituting \( c = 0 \) gives \( 0 + d = d \), which is always true. 5. **Final Conditions**: Thus, we conclude that the conditions for the matrix \( A \) to be commutative with matrix \( B \) are: - \( c = 0 \) - \( a = d \) ### Final Answer: The conditions are: - \( c = 0 \) - \( a = d \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Matrix [{:(1,0),(0,1):}] is :

If matrix A=[(0,-1),(1,0)] , then A^16 =

the matrix [(0,1),(1,0)] is the matrix reflection in the line

Matrix m ultiplication is commutative.

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

In the matrix [[1,0,5],[2,-3,4]] order of matrix matrix is………

(i) Show that the matrix A=[{:(1,-1,5),(-1,2,1),(5,1,3):}] is a symmetric matrix. (ii) Show that the matrix A-[{:(0 ,1,-1),(-1, 2, 1),( 1,-1, 0):}] is a skew symmetric matrix.

Find the rank of the matrix [[0,0],[-1,1]]

The matrix A=[{:(1,0,0),(0,2,0),(0,0,3):}] is: a) scalar matrix b) symmetric matrix c) skew symmetric matrix d) none f these

The matrix A=[{:(0,0,2),(0,2,0),(2,0,0):}] is: a) scalar matrix b) diagonal matrix c) square matrix d) none of these

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is an orthogonal matrix, then

    Text Solution

    |

  2. Let A be a non-singular square matrix of order n. Then; |adjA| =

    Text Solution

    |

  3. Let A=[a(ij)](n xxn) be a square matrix and let c(ij) be cofactor of...

    Text Solution

    |

  4. If A is a non-singlular square matrix of order n, then the rank of A i...

    Text Solution

    |

  5. If A is a matrix such that there exists a square submatrix of order r ...

    Text Solution

    |

  6. Let A be a matrix of rank r. Then,

    Text Solution

    |

  7. Let A=[a(ij)](mxxn) be a matrix such that a(ij)=1 for all I,j. Then ,

    Text Solution

    |

  8. If A is a non-zero column matrix of order mxx1 and B is a non-zero row...

    Text Solution

    |

  9. The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:}, ...

    Text Solution

    |

  10. If A is an invertible matrix, then "det" (A -1) is equal to

    Text Solution

    |

  11. If A and B are two matrices such that rank of A = m and rank of B = n...

    Text Solution

    |

  12. If A=[3 4 2 4] , B=[-2-2 0-1] , then (A+B)^(-1) (a) is a skew-symmetr...

    Text Solution

    |

  13. Let A=[a0 0 0a0 0 0a] , then A^n is equal to [a^n0 0 0a^n0 0 0a] (b) [...

    Text Solution

    |

  14. If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim(x>oo)1/nA^n i...

    Text Solution

    |

  15. If A=[[1, 2, x], [0 ,1 ,0],[ 0, 0, 1]] and B=[[1,-2,y],[0, 1, 0 ],[0...

    Text Solution

    |

  16. If A=[{:(,1,a),(,0,1):}] then find underset(n-oo)(lim)(1)/(n)A^(n)

    Text Solution

    |

  17. If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(...

    Text Solution

    |

  18. If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," ...

    Text Solution

    |

  19. If matrix A has 180 elements, then the number of possible orders of A ...

    Text Solution

    |

  20. A 3xx3 matrix A, with 1st row elements as 2,-1,-1 respectively, is mod...

    Text Solution

    |