Home
Class 11
MATHS
If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:}...

If `{:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:}` such that `A^100-I=lambdaB," then "lambda=`

A

99

B

100

C

10

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the procedure outlined in the video transcript. Here is the detailed solution: ### Step 1: Define the Matrices We have two matrices: \[ A = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \] Calculating the product: \[ A^2 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot k & 1 \cdot 0 + 0 \cdot 1 \\ k \cdot 1 + 1 \cdot k & k \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2k & 1 \end{pmatrix} \] ### Step 3: Calculate \( A^3 \) Next, we find \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 2k & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \] Calculating the product: \[ A^3 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot k & 1 \cdot 0 + 0 \cdot 1 \\ 2k \cdot 1 + 1 \cdot k & 2k \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3k & 1 \end{pmatrix} \] ### Step 4: Calculate \( A^4 \) Now we calculate \( A^4 \): \[ A^4 = A^3 \cdot A = \begin{pmatrix} 1 & 0 \\ 3k & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \] Calculating the product: \[ A^4 = \begin{pmatrix} 1 & 0 \\ 3k + k & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 4k & 1 \end{pmatrix} \] ### Step 5: Identify the Pattern From the calculations, we can see a pattern emerging: - \( A^2 = \begin{pmatrix} 1 & 0 \\ 2k & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 \\ 3k & 1 \end{pmatrix} \) - \( A^4 = \begin{pmatrix} 1 & 0 \\ 4k & 1 \end{pmatrix} \) Thus, we can generalize: \[ A^n = \begin{pmatrix} 1 & 0 \\ nk & 1 \end{pmatrix} \] ### Step 6: Calculate \( A^{100} \) Using the pattern, we find: \[ A^{100} = \begin{pmatrix} 1 & 0 \\ 100k & 1 \end{pmatrix} \] ### Step 7: Substitute into the Given Equation We need to compute \( A^{100} - I \): \[ A^{100} - I = \begin{pmatrix} 1 & 0 \\ 100k & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 100k & 0 \end{pmatrix} \] ### Step 8: Set the Equation We have: \[ A^{100} - I = \lambda B \] Substituting for \( B \): \[ \begin{pmatrix} 0 & 0 \\ 100k & 0 \end{pmatrix} = \lambda \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix} \] ### Step 9: Compare Elements From the equation, we can compare the elements: - The first row gives no information since both sides are zero. - From the second row, we have: \[ 100k = \lambda k \] Assuming \( k \neq 0 \), we can divide both sides by \( k \): \[ \lambda = 100 \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = 100 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A=[(1, 0),(-1 ,7)] , find k such that A^2-8A+k I=O .

A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"lambda "is"

If A={:[(1,4,2),(-1,2,3)]:}andB={:[(1,0,0),(0,-1,1)]:} , verify that (i) (A^('))^(')=A (ii) (kB)^(')=kB^(') (iii) (A+B)^(')=A^(')+B^(')

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

If A=[[3 ,1],[-1 ,2]] and I=[[1, 0],[ 0, 1]] , then find lambda so that A^2=5A+lambdaI

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Exercise
  1. If A is an orthogonal matrix, then

    Text Solution

    |

  2. Let A be a non-singular square matrix of order n. Then; |adjA| =

    Text Solution

    |

  3. Let A=[a(ij)](n xxn) be a square matrix and let c(ij) be cofactor of...

    Text Solution

    |

  4. If A is a non-singlular square matrix of order n, then the rank of A i...

    Text Solution

    |

  5. If A is a matrix such that there exists a square submatrix of order r ...

    Text Solution

    |

  6. Let A be a matrix of rank r. Then,

    Text Solution

    |

  7. Let A=[a(ij)](mxxn) be a matrix such that a(ij)=1 for all I,j. Then ,

    Text Solution

    |

  8. If A is a non-zero column matrix of order mxx1 and B is a non-zero row...

    Text Solution

    |

  9. The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:}, ...

    Text Solution

    |

  10. If A is an invertible matrix, then "det" (A -1) is equal to

    Text Solution

    |

  11. If A and B are two matrices such that rank of A = m and rank of B = n...

    Text Solution

    |

  12. If A=[3 4 2 4] , B=[-2-2 0-1] , then (A+B)^(-1) (a) is a skew-symmetr...

    Text Solution

    |

  13. Let A=[a0 0 0a0 0 0a] , then A^n is equal to [a^n0 0 0a^n0 0 0a] (b) [...

    Text Solution

    |

  14. If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim(x>oo)1/nA^n i...

    Text Solution

    |

  15. If A=[[1, 2, x], [0 ,1 ,0],[ 0, 0, 1]] and B=[[1,-2,y],[0, 1, 0 ],[0...

    Text Solution

    |

  16. If A=[{:(,1,a),(,0,1):}] then find underset(n-oo)(lim)(1)/(n)A^(n)

    Text Solution

    |

  17. If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(...

    Text Solution

    |

  18. If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," ...

    Text Solution

    |

  19. If matrix A has 180 elements, then the number of possible orders of A ...

    Text Solution

    |

  20. A 3xx3 matrix A, with 1st row elements as 2,-1,-1 respectively, is mod...

    Text Solution

    |