Home
Class 11
MATHS
A straight line through origin O meets t...

A straight line through origin O meets the lines `3y=10-4x& 8x+6y+5=0` at points A and B respectively. Then O divides the segment AB in the ratio:

A

`3:4`

B

`1:2`

C

`2:3`

D

`4:1`

Text Solution

Verified by Experts

The correct Answer is:
D

Clearly, origin O is between the lines `4x+3y-10=0 and 8x+6y+5=0` . Equation of a line passing through the origin O is `(x)/(cos theta)=(y)/(sin theta)`. Let OP =`r_(1) and OQ=r_(2)` . Then, the coordinates of P and Q are `(r_(1)cos theta , r_(1) sin theta)` and `(r_(2)cos theta, r_(2)sintheta)` respectively. These points lie on the lines `8x+6y+5=0 and 4x+3y-10=0` respectively.
`therefore r_(2)(8cos theta+6sin theta)+5=0 and r_(2)(4costheta+3sin theta)-10=0`
`implies r_(1)-(-5)/(2(4costheta+3sin theta)) and r_(2)=(10)/(4cos theta+3 sin theta)`

`implies r_(1)=(r_(2))/(4)`
`implies (r_(2))/(r_(1))=-(4)/(1)`
Hence , the required ratio is 4:1
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise ILLUSTRATION 18|1 Videos
  • STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

A straight line through origin O meets the lines 3y=10-4x and 8x+6y+5=0 at point A and B respectively. Then , O divides the Segment AB in the ratio.

A straight line through the origin 'O' meets the parallel lines 4x +2y= 9 and 2x +y=-6 at points P and Q respectively. Then the point 'O' divides the segment PQ in the ratio

A straight line through the point (2,2) intersects the lines sqrt(3)x+y=0 and sqrt(3)x-y=0 at the point A and B , respectively. Then find the equation of the line A B so that triangle O A B is equilateral.

A straight line through the point (2,2) intersects the lines sqrt(3)x+y=0 and sqrt(3)x-y=0 at the point A and B , respectively. Then find the equation of the line A B so that triangle O A B is equilateral.

A straight line through the point A (-2,-3) cuts the line x+3y=9 and x+y+1=0 at B and C respectively. If AB.AC =20 then equation of the possible line is

The tangent drawn to the hyperbola (x^(2))/(16)-(y^(2))/(9)=1 , at point P in the first quadrant whose abscissa is 5, meets the lines 3x-4y=0 and 3x+4y=0 at Q and R respectively. If O is the origin, then the area of triangle OQR is (in square units)

The line x/a+y/b=1 meets the axis of and y at A and B respectively and C is middle point of AB then

The line 2x+3y=12 meets the coordinates axes at A and B respectively. The line through (5, 5) perpendicular to AB meets the coordinate axes and the line AB at C, D and E respectively. If O is the origin, then the area (in sq. units) of the figure OCEB is equal to

A straight line through A (-15 -10) meets the lines x-y-1=0 , x+2y=5 and x+3y=7 respectively at A, B and C. If 12/(AB)+40/(AC)=52/(AD) prove that the line passes through the origin.

The line 2x+3y=12 meets the x-axis at A and y-axis at B. The line through (5,5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.

OBJECTIVE RD SHARMA ENGLISH-STRAIGHT LINES-Chapter Test
  1. A straight line through origin O meets the lines 3y=10-4x& 8x+6y+5=0 ...

    Text Solution

    |

  2. The equation to a pair of opposite sides of a parallelogram are x^2-5x...

    Text Solution

    |

  3. The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B)...

    Text Solution

    |

  4. P is a point on either of the two lines y - sqrt(3)|x| = 2 at a dista...

    Text Solution

    |

  5. If one diagonal of a square is along the line x=2y and one of its vert...

    Text Solution

    |

  6. The line which is parallel to x-axis and crosses the curve y=sqrt(x) a...

    Text Solution

    |

  7. P(3,1),Q(6,5) and R(x,y) are three points such that PRQ is a right ang...

    Text Solution

    |

  8. Find the equation of the straight line which passes through the point ...

    Text Solution

    |

  9. What is the equation of the straight line which is perpendicular to y=...

    Text Solution

    |

  10. Find the perpendicular distance between the lines 3x+4y+9=0 and to 6x...

    Text Solution

    |

  11. The equation of the line passing through the point (1,2) and perpendic...

    Text Solution

    |

  12. The straight lines x+y=0, 3x+y-4=0 and x+3y-4=0 form a triangle which ...

    Text Solution

    |

  13. Triangle formed by x^(2)-3y^(2)=0 and x=4 is

    Text Solution

    |

  14. The co-ordinates of the orthocentre of the triangle bounded by the lin...

    Text Solution

    |

  15. the lines (p+2q)x+(p-3q)y=p-q for different values of p&q passes troug...

    Text Solution

    |

  16. Write the distance between the lines 4x+3y-11=0\ a n d\ 8x+6y-15=0.

    Text Solution

    |

  17. If the diagonals of a parallelogram ABCD are along the lines x+5y=7 a...

    Text Solution

    |

  18. The straight lines x+y-4=0, 3x+y-4=0 and x+3y-4=0 form a triangle, whi...

    Text Solution

    |

  19. Write the coordinates of the orthocentre of the triangle formed by ...

    Text Solution

    |

  20. A point equidistant from the line 4x + 3y + 10 = 0, 5x-12y + 26 = 0 an...

    Text Solution

    |

  21. The number of values of a for which the lines 2x+y-1=0 , a x+3y-3=0, a...

    Text Solution

    |