Home
Class 11
MATHS
"For "0ltthetalt(pi)/(2), if x=sum(n=0...

`"For "0ltthetalt(pi)/(2)`, if
`x=sum_(n=0)^(oo)cos^(2n)theta,y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)thetasin^(2n)phi`, then

A

xy=zx+zy+z

B

xy=zx+zy-z

C

xy+yz+zx=z

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( x \), \( y \), and \( z \) defined in the question. Let's break down the solution step by step. ### Step 1: Calculate \( x \) The sum \( x \) is defined as: \[ x = \sum_{n=0}^{\infty} \cos^{2n} \theta \] This is a geometric series where the first term \( a = 1 \) and the common ratio \( r = \cos^2 \theta \). Using the formula for the sum of an infinite geometric series: \[ S = \frac{a}{1 - r} \] we can write: \[ x = \frac{1}{1 - \cos^2 \theta} \] Since \( 1 - \cos^2 \theta = \sin^2 \theta \), we have: \[ x = \frac{1}{\sin^2 \theta} \] ### Step 2: Calculate \( y \) The sum \( y \) is defined as: \[ y = \sum_{n=0}^{\infty} \sin^{2n} \phi \] This is also a geometric series with first term \( a = 1 \) and common ratio \( r = \sin^2 \phi \). Using the same formula for the sum: \[ y = \frac{1}{1 - \sin^2 \phi} \] Since \( 1 - \sin^2 \phi = \cos^2 \phi \), we have: \[ y = \frac{1}{\cos^2 \phi} \] ### Step 3: Calculate \( z \) The sum \( z \) is defined as: \[ z = \sum_{n=0}^{\infty} \cos^{2n} \theta \sin^{2n} \phi \] This can also be treated as a geometric series where the first term \( a = 1 \) and the common ratio \( r = \cos^2 \theta \sin^2 \phi \). Using the formula for the sum: \[ z = \frac{1}{1 - \cos^2 \theta \sin^2 \phi} \] ### Step 4: Relate \( x \), \( y \), and \( z \) Now we have: \[ x = \frac{1}{\sin^2 \theta}, \quad y = \frac{1}{\cos^2 \phi}, \quad z = \frac{1}{1 - \cos^2 \theta \sin^2 \phi} \] We can express \( \cos^2 \theta \) and \( \sin^2 \phi \) in terms of \( x \) and \( y \): \[ \cos^2 \theta = \frac{1}{x}, \quad \sin^2 \phi = \frac{1}{y} \] Substituting these into the expression for \( z \): \[ z = \frac{1}{1 - \left(\frac{1}{x}\right)\left(\frac{1}{y}\right)} = \frac{1}{1 - \frac{1}{xy}} = \frac{xy}{xy - 1} \] ### Step 5: Establish the relationship From the above, we can establish the relationship: \[ x + y - 1 = xy \] ### Conclusion Thus, the final relationship we derived is: \[ xy = x + y - 1 \]

To solve the problem, we need to evaluate the sums \( x \), \( y \), and \( z \) defined in the question. Let's break down the solution step by step. ### Step 1: Calculate \( x \) The sum \( x \) is defined as: \[ x = \sum_{n=0}^{\infty} \cos^{2n} \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|80 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta and z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta , then show xyz=xy+z .

If x=sum_(n=0)^oocos^(2n)theta,y=sum_(n=0)^oosin^(2n)varphi,z=sum_(n=0)^oocos^(2n)thetasin^(2n)varphi,w h e r e0 < theta,varphi < pi//2 prove that x z+y z-z=x ydot

If x=sum_(n=0)^oocos^(2n)theta,y=sum_(n=0)^oosin^(2n)varphi,z=sum_(n=0)^oocos^(2n)thetasin^(2n)varphi , where 0lttheta,varphi ltpi//2 prove that x z+y z-z=x ydot

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

Let x= sum_(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum_(n=0)^oo (costheta)^(2n) qhere theta in (0,pi/4) , then

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Chapter Test
  1. "For "0ltthetalt(pi)/(2), if x=sum(n=0)^(oo)cos^(2n)theta,y=sum(n=0)...

    Text Solution

    |

  2. Let H(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n), then the sum to n terms...

    Text Solution

    |

  3. Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+............

    Text Solution

    |

  4. If A(1),A(2) are between two numbers, then (A(1)+A(2))/(H(1)+H(2)) is ...

    Text Solution

    |

  5. If the (m+1)t h ,(n+1)t h ,a n d(r+1)t h terms of an A.P., are in G.P....

    Text Solution

    |

  6. Given that n arithmetic means are inserted between two sets of numbers...

    Text Solution

    |

  7. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  8. If in a progression a1, a2, a3, e t cdot,(ar-a(r+1)) bears a constant...

    Text Solution

    |

  9. If in an AP, t1 = log10 a, t(n+1) = log10 b and t(2n+1) = log10 c then...

    Text Solution

    |

  10. Find the sum of the series: 1^2-2^2+3^2-4^2+.....-2008^2+2009^2.

    Text Solution

    |

  11. If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca)," where "a,b,c are non-zero nu...

    Text Solution

    |

  12. If Sn denotes the sum of n terms of an A.P. whose common difference is...

    Text Solution

    |

  13. The sides of a right angled triangle are in A.P., then they are in the...

    Text Solution

    |

  14. Find the sum of all the 11 terms of an AP whose middle most term is 30...

    Text Solution

    |

  15. The maximum sum of the series 20+19 1/3+18 2/3+ is 310 b. 300 c. 0320 ...

    Text Solution

    |

  16. If three numbers are in G.P., then the numbers obtained by adding the ...

    Text Solution

    |

  17. If p ,q ,r are in A.P., show that the pth, qth and rth terms of any G....

    Text Solution

    |

  18. Let a,b,c be three positive prime number. The progrrssion in which sqr...

    Text Solution

    |

  19. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  20. If three numbers are in H.P., then the numbers obtained by subtracting...

    Text Solution

    |

  21. The first three of four given numbers are in G.P. and their last three...

    Text Solution

    |