Home
Class 11
MATHS
Statement -1: (1^(2))/(1.3)+(2^(2))/(3....

Statement -1: `(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1))` Statement -2: `(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)`

A

Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.

B

Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.

C

Statement -1 is true, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
C

We, have
`(1^(2))/(1.3)+(2^(2))/(3.7)+(3^(2))/(5.7)+ . . . . . . . . . . . . . +(n^(2))/((2n-1)(2n+1))`
`=underset(r=1)overset(n)sum(r^(2))/((2r-1)(2r+1))`
`=(1)/(4)underset(r=1)overset(n)sum(4r^(2))/((2r-1)(2r+1))`
`=(1)/(4)underset(r=1)overset(n)sum((2r-1)(2r+1)+1)/((2r-1)(2r+1))`
`=(1)/(4)underset(r=1)overset(n)sum{1+(1)/((2r-1)(2r+1))}`
`=(1)/(4)underset(r=1)overset(n)sum1+(1)/(8)underset(r=1)overset(n)sum((1)/(2r-1)-(1)/(2r+1))`
`=(n)/(4)+(1)/(8)(1-(1)/(2n+1))=(n(n+1))/(2(2n+1))`
So, statement -1 is true.
Statement -2 is fals, because
`(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . . .+(1)/((2n-1)(2n+1))`
`=underset(r=1)overset(n)sum(1)/((2r-1)(2r+1))=(1)/(2)underset(r=1)overset(n)sum((1)/(2r-1)-(1)/(2r+1))`
`=(1)/(2)(1-(1)/(2n+1))=(n)/(2n+1)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|80 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

(1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))/48+n/(16(2n+1)

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

If a_(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+(1)/(5)+ . . . .+(1)/(2^(n)-1) , then

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

If (1 ^(2) - t _(1)) + (2 ^(2) - t _(2)) + ......+ ( n ^(2) - t _(n)) =(1)/(3) n ( n ^(2) -1 ), then t _(n) is