Home
Class 11
MATHS
"If" ("log"(10)a)/(2) = ("log"(10)b)/(3)...

`"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5)`, then bc =

A

a

B

`a^(2)`

C

`a^(3)`

D

`a^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we have the equation: \[ \frac{\log_{10} a}{2} = \frac{\log_{10} b}{3} = \frac{\log_{10} c}{5} \] we will denote this common value as \( k \). Therefore, we can rewrite the equations as follows: 1. \(\frac{\log_{10} a}{2} = k\) 2. \(\frac{\log_{10} b}{3} = k\) 3. \(\frac{\log_{10} c}{5} = k\) ### Step 1: Express \( a \), \( b \), and \( c \) in terms of \( k \) From the first equation, we can express \( \log_{10} a \): \[ \log_{10} a = 2k \] Using the definition of logarithms, we can express \( a \): \[ a = 10^{2k} \] From the second equation, we can express \( \log_{10} b \): \[ \log_{10} b = 3k \] Thus, we can express \( b \): \[ b = 10^{3k} \] From the third equation, we can express \( \log_{10} c \): \[ \log_{10} c = 5k \] Thus, we can express \( c \): \[ c = 10^{5k} \] ### Step 2: Find the product \( bc \) Now, we need to find the product \( bc \): \[ bc = b \cdot c = (10^{3k}) \cdot (10^{5k}) \] Using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \): \[ bc = 10^{3k + 5k} = 10^{8k} \] ### Step 3: Express \( bc \) in terms of \( a \) We already know that \( a = 10^{2k} \). To express \( 10^{8k} \) in terms of \( a \), we can manipulate the expression for \( a \): \[ a = 10^{2k} \implies 10^{8k} = (10^{2k})^4 = a^4 \] ### Conclusion Thus, we find that: \[ bc = a^4 \] ### Final Answer The value of \( bc \) is \( a^4 \). ---

To solve the problem where we have the equation: \[ \frac{\log_{10} a}{2} = \frac{\log_{10} b}{3} = \frac{\log_{10} c}{5} \] we will denote this common value as \( k \). Therefore, we can rewrite the equations as follows: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 2^("log"_(10) 3sqrt(3)) = 3^(k"log"_(10)2) , then k =

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If log_(10)m=(1)/(2) , then log_(10)10m^(2)=

If log_(10)5=a and log_(10)3=b ,then

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

If "log"_(10) 2 = 0.3010, "then log"_(5) 64=

If "log"_(10) sin x+"log"_(10)cos x=-1 and "log"_(10)(sin x+cosx)=(("log"_(10)n)n-1)/(2) then the value of n is ____________

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

For the system of equation "log"_(10) (x^(3)-x^(2)) = "log"_(5)y^(2) "log"_(10)(y^(3)-y^(2)) = "log"_(5) z^(2) "log"_(10)(z^(3)-z^(2)) = "log"_(5)x^(2) Which of the following is/are true?

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. "If" ("log"(10)a)/(2) = ("log"(10)b)/(3) = ("log"(10)c)/(5), then bc =

    Text Solution

    |

  2. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  3. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  4. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  5. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  6. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  7. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  8. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  9. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  10. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  11. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  12. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  13. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  14. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  15. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  16. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  17. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  18. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  19. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  20. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  21. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |