Home
Class 11
MATHS
If a, b, c are positive real numbers, th...

If a, b, c are positive real numbers, then
`(1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =`

A

0

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc} \] we will follow these steps: ### Step 1: Rewrite the logarithmic terms Using the property of logarithms that states \( \log_a b = \frac{1}{\log_b a} \), we can rewrite each term: \[ \frac{1}{\log_{ab} abc} = \log_{abc} (ab) \] \[ \frac{1}{\log_{bc} abc} = \log_{abc} (bc) \] \[ \frac{1}{\log_{ca} abc} = \log_{abc} (ca) \] Thus, the expression becomes: \[ \log_{abc} (ab) + \log_{abc} (bc) + \log_{abc} (ca) \] ### Step 2: Combine the logarithmic terms Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine the logarithmic terms: \[ \log_{abc} (ab) + \log_{abc} (bc) + \log_{abc} (ca) = \log_{abc} (ab \cdot bc \cdot ca) \] ### Step 3: Simplify the argument of the logarithm Now, we simplify the product: \[ ab \cdot bc \cdot ca = a^2b^2c^2 \] Thus, we have: \[ \log_{abc} (a^2b^2c^2) \] ### Step 4: Apply the power property of logarithms Using the property that \( \log_a (b^c) = c \cdot \log_a b \), we can simplify further: \[ \log_{abc} (a^2b^2c^2) = 2 \cdot \log_{abc} (abc) \] ### Step 5: Evaluate the logarithm Since \( \log_{abc} (abc) = 1 \) (because the base and the argument are the same), we find: \[ 2 \cdot \log_{abc} (abc) = 2 \cdot 1 = 2 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{2} \] ---

To solve the expression \[ \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

Evaluate : (1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)

If a, b, c are positive real numbers, then a^("log"b-"log"c) xx b^("log"c-"log"a) xx c^("log"a - "log"b)

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to:

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

If a and b are positive real numbers other than unity, then the least value of |"log"_(b) a + "log"_(a) b| , is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different from unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

If log_(a)b+log_(b)c+log_(c)a vanishes where a, b and c are positive reals different than unity then the value of (log_(a)b)^(3) + (log_(b)c)^(3) + (log_(c)a)^(3) is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. If a, b, c are positive real numbers, then (1)/("log"(ab)abc) + (1)...

    Text Solution

    |

  2. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  3. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  4. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  5. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  6. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  7. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  8. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  9. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  10. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  11. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  12. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  13. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  14. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  15. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  16. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  17. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  18. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  19. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  20. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  21. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |