Home
Class 11
MATHS
If "log"(3) x + "log"(9)x^(2) + "log"(27...

If `"log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9`, then x =

A

3

B

9

C

27

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_3 x + \log_9 x^2 + \log_{27} x^3 = 9 \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 3 We know that: - \( \log_9 x^2 = \frac{\log_3 x^2}{\log_3 9} \) - \( \log_{27} x^3 = \frac{\log_3 x^3}{\log_3 27} \) Now, we can express \( \log_3 9 \) and \( \log_3 27 \): - \( \log_3 9 = \log_3 (3^2) = 2 \) - \( \log_3 27 = \log_3 (3^3) = 3 \) Thus, we can rewrite the logarithms: \[ \log_9 x^2 = \frac{2 \log_3 x}{2} = \log_3 x \] \[ \log_{27} x^3 = \frac{3 \log_3 x}{3} = \log_3 x \] ### Step 2: Substitute back into the original equation Now we substitute these back into the original equation: \[ \log_3 x + \log_3 x + \log_3 x = 9 \] This simplifies to: \[ 3 \log_3 x = 9 \] ### Step 3: Solve for \( \log_3 x \) Dividing both sides by 3: \[ \log_3 x = 3 \] ### Step 4: Convert from logarithmic to exponential form Using the property of logarithms that states if \( \log_b a = c \), then \( a = b^c \): \[ x = 3^3 \] Calculating this gives: \[ x = 27 \] ### Final Answer Thus, the solution to the equation is: \[ \boxed{27} \]

To solve the equation \( \log_3 x + \log_9 x^2 + \log_{27} x^3 = 9 \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 3 We know that: - \( \log_9 x^2 = \frac{\log_3 x^2}{\log_3 9} \) - \( \log_{27} x^3 = \frac{\log_3 x^3}{\log_3 27} \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If x^({(3)/(4)("log"_(3)x)^(2) + ("log"_(3)x)-(5)/(4)}) = sqrt(3) , then x has

Evaluate: log_(9)27 - log_(27)9

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. If "log"(3) x + "log"(9)x^(2) + "log"(27)x^(3) = 9, then x =

    Text Solution

    |

  2. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  3. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  4. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  5. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  6. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  7. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  8. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  9. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  10. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  11. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  12. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  13. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  14. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  15. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  16. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  17. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  18. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  19. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  20. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  21. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |