Home
Class 11
MATHS
The value of "log"(8) 128, is...

The value of `"log"_(8) 128`, is

A

`(7)/(3)`

B

16

C

`(3)/(7)`

D

`(1)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{8} 128 \), we can follow these steps: ### Step 1: Express the numbers in terms of powers of 2 We know that: - \( 8 = 2^3 \) - \( 128 = 2^7 \) ### Step 2: Rewrite the logarithm using the change of base formula Using the property of logarithms that states \( \log_{a^m} b^n = \frac{n}{m} \log_{b} a \), we can rewrite \( \log_{8} 128 \) as: \[ \log_{8} 128 = \log_{2^3} 2^7 \] ### Step 3: Apply the property of logarithms Using the property mentioned: \[ \log_{2^3} 2^7 = \frac{7}{3} \log_{2} 2 \] ### Step 4: Simplify using the fact that \( \log_{2} 2 = 1 \) Since \( \log_{2} 2 = 1 \): \[ \log_{2^3} 2^7 = \frac{7}{3} \cdot 1 = \frac{7}{3} \] ### Final Answer Thus, the value of \( \log_{8} 128 \) is: \[ \frac{7}{3} \] ---

To find the value of \( \log_{8} 128 \), we can follow these steps: ### Step 1: Express the numbers in terms of powers of 2 We know that: - \( 8 = 2^3 \) - \( 128 = 2^7 \) ### Step 2: Rewrite the logarithm using the change of base formula ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

The value of 16^("log"4^(3)) , is

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23) is equal to

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

The value of "log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2 , is

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. The value of "log"(8) 128, is

    Text Solution

    |

  2. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  3. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  4. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  5. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  6. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  7. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  8. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  9. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  10. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  11. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  12. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  13. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  14. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  15. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  16. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  17. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  18. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  19. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  20. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  21. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |