Home
Class 11
MATHS
The value of 2^("log"3^(5)) - 5^("log"3^...

The value of `2^("log"3^(5)) - 5^("log"3^(2))` is

A

2

B

-1

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^{\log_3{5}} - 5^{\log_3{2}}\), we can use the property of logarithms that states: \[ a^{\log_b{c}} = c^{\log_b{a}} \] ### Step 1: Rewrite \(2^{\log_3{5}}\) Using the logarithmic property mentioned above, we can rewrite \(2^{\log_3{5}}\): \[ 2^{\log_3{5}} = 5^{\log_3{2}} \] ### Step 2: Substitute back into the expression Now we can substitute this back into the original expression: \[ 2^{\log_3{5}} - 5^{\log_3{2}} = 5^{\log_3{2}} - 5^{\log_3{2}} \] ### Step 3: Simplify the expression Since we have \(5^{\log_3{2}} - 5^{\log_3{2}}\), this simplifies to: \[ 0 \] ### Conclusion Thus, the value of \(2^{\log_3{5}} - 5^{\log_3{2}}\) is: \[ \boxed{0} \] ---

To solve the expression \(2^{\log_3{5}} - 5^{\log_3{2}}\), we can use the property of logarithms that states: \[ a^{\log_b{c}} = c^{\log_b{a}} \] ### Step 1: Rewrite \(2^{\log_3{5}}\) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

The value of 3^((log)_4 5)-5^((log)_4 3) is 0 (b) 1 (c) 2 (d) none of these

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

OBJECTIVE RD SHARMA ENGLISH-LOGARITHMS-Chapter Test
  1. The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

    Text Solution

    |

  2. If x^((3)/(2)("log"(2) x-3)) = (1)/(8), then x equals to

    Text Solution

    |

  3. If "log"(4)(3x^(2) +11x) gt 1, then x lies in the interval

    Text Solution

    |

  4. If "log"(6) (x+3)-"log"(6)x = 2, then x =

    Text Solution

    |

  5. If 2^(x).9^(2x+3) = 7^(x+5), then x =

    Text Solution

    |

  6. The solution of the equation (log)7(log)5(sqrt(x+5)+sqrt(x)=0 is...

    Text Solution

    |

  7. If "log"(6) {"log"(4)(sqrt(x+4) + sqrt(x))} =0, then x =

    Text Solution

    |

  8. If x^("log"(x)(x^(2)-4x +5)) = (x-1), then x =

    Text Solution

    |

  9. If "log"(3) {"log"(6)((x^(2) +x)/(x-1))} =0 then x =

    Text Solution

    |

  10. If "log"(8){"log"(2) "log"(3) (x^(2) -4x +85)} = (1)/(3), then x equal...

    Text Solution

    |

  11. If x = "log"(2) 3 " and " y = "log"(1//2) 5, then

    Text Solution

    |

  12. If "log"(x+2) (x^(3)-3x^(2)-6x +8) =3, then x equals to

    Text Solution

    |

  13. If (2.3)^x=(0.23)^y=1000, then find the value of 1/x-1/y.

    Text Solution

    |

  14. If 10^(x-1) + 10^(-x-1) = (1)/(3), then x equals to

    Text Solution

    |

  15. (log)2(log)2(log)3(log)3 27^3 is 0 b. 1 c. 2 d.\ 3

    Text Solution

    |

  16. If 2"log"(8) a =x, "log"(2) 2a = y " and " y-x =4, then x =

    Text Solution

    |

  17. If "log"(10) x =y, " then log"(10^(3))x^(2) equals

    Text Solution

    |

  18. If "log"(3) x xx "log"(x) 2x xx "log"(2x)y ="log"(x) x^(2), then y equ...

    Text Solution

    |

  19. The number of solutions of "log"(2) (x-1) = 2 "log"(2) (x-3) is

    Text Solution

    |

  20. If (1)/("log"(3) pi) + (1)/("log"(4) pi) gt x, then the greatest integ...

    Text Solution

    |

  21. Let x in(1,oo) and n be a positive integer greater than 1. If fn (x) =...

    Text Solution

    |