Home
Class 11
MATHS
Statement-1: 0 lt x lt y rArr "log"(a) x...

Statement-1: `0 lt x lt y rArr "log"_(a) x gt "log"_(a) y,` where ` a gt 1`
Statement-2: `"When" a gt 1, "log"_(a) x` is an increasing function.

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

When `a gt 1, "log"_(a)x` is an increasing function.
`therefore x lt y rArr "log"_(a) x lt "log"_(a)y`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Statement -1: 0 lt x lt y rArr "log"_(a) x gt "log"_(a) y,"where" 0 lt a lt 1 Statement-2: "log"_(a) x is a decreasing function when 0 lt a lt 1.

State, true of false : x lt - y rArr - x gt y

"log" ("log"x), x gt 1

Statement-1: "log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x Statement-2: x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1

If "log"_(a) x xx "log"_(5)a = "log"_(x) 5, a ne 1, a gt 0, " then "x =

Statement-1 : f : R rarr R, f(x) = x^(2) log(|x| + 1) is an into function. and Statement-2 : f(x) = x^(2) log(|x|+1) is a continuous even function.

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

Statement-1 : If x^("log"_(x) (3-x)^(2)) = 25, then x =-2 Statement-2: a^("log"_(a) x) = x,"if" a gt 0, x gt 0 " and " a ne 1

Statement-1: 3^("log"_(2) 7) -7^("log"_(2)3) = 0 Statement-2: x^("log"_(a)y) = y^("log"_(a)x), " where "x gt 0, y gt 0" and "a gt 0, a ne 1

For relation 2 log y - log x - log ( y-1) =0