Home
Class 11
MATHS
Statement-1: "log"(10)x lt "log"(pi) x l...

Statement-1: `"log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x`
Statement-2: `x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we will analyze each statement step by step. ### Statement 1: We need to verify the inequality: \[ \log_{10} x < \log_{\pi} x < \log_{e} x < \log_{2} x \] #### Step 1: Rewrite the logarithms using the change of base formula. Using the change of base formula, we can express the logarithms as: \[ \log_{b} x = \frac{\log_{10} x}{\log_{10} b} \] Thus, we can rewrite the inequality as: \[ \frac{\log_{10} x}{\log_{10} 10} < \frac{\log_{10} x}{\log_{10} \pi} < \frac{\log_{10} x}{\log_{10} e} < \frac{\log_{10} x}{\log_{10} 2} \] #### Step 2: Simplify the inequality. Since \(\log_{10} 10 = 1\), we can simplify the inequality to: \[ \log_{10} x < \frac{\log_{10} x}{\log_{10} \pi} < \frac{\log_{10} x}{\log_{10} e} < \frac{\log_{10} x}{\log_{10} 2} \] #### Step 3: Analyze the denominators. The values of \(\log_{10} 10\), \(\log_{10} \pi\), \(\log_{10} e\), and \(\log_{10} 2\) are: - \(\log_{10} 10 = 1\) - \(\log_{10} \pi \approx 0.497\) - \(\log_{10} e \approx 0.434\) - \(\log_{10} 2 \approx 0.301\) Since \(1 > \pi > e > 2\), we can conclude that: \[ \log_{10} 10 < \log_{10} \pi < \log_{10} e < \log_{10} 2 \] #### Step 4: Reverse the inequality. Since the logarithm of \(x\) is the same in the numerators, the inequality holds true in reverse order: \[ \log_{10} x < \log_{\pi} x < \log_{e} x < \log_{2} x \] This confirms that Statement 1 is true. ### Statement 2: We need to verify the statement: \[ x < y \Rightarrow \log_{a} x > \log_{a} y \text{ when } 0 < a < 1 \] #### Step 5: Analyze the logarithmic property. For a base \(a\) where \(0 < a < 1\), the logarithmic function is decreasing. Therefore, if \(x < y\), then: \[ \log_{a} x > \log_{a} y \] This confirms that Statement 2 is also true. ### Conclusion: Both statements are true.

To solve the given statements, we will analyze each statement step by step. ### Statement 1: We need to verify the inequality: \[ \log_{10} x < \log_{\pi} x < \log_{e} x < \log_{2} x \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

|log_(3) x| lt 2

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

Statement -1: 0 lt x lt y rArr "log"_(a) x gt "log"_(a) y,"where" 0 lt a lt 1 Statement-2: "log"_(a) x is a decreasing function when 0 lt a lt 1.

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Solve log_(2)|x| lt 3

Statement-1: 0 lt x lt y rArr "log"_(a) x gt "log"_(a) y, where a gt 1 Statement-2: "When" a gt 1, "log"_(a) x is an increasing function.

Statement-1: 3^("log"_(2) 7) -7^("log"_(2)3) = 0 Statement-2: x^("log"_(a)y) = y^("log"_(a)x), " where "x gt 0, y gt 0" and "a gt 0, a ne 1

Solve 1 lt log_(2)(x-2) le 2 .

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

Solve log_(2)|x-1| lt 1 .