Home
Class 11
MATHS
Statement-1: If a =y^(2), b=z^(2) " and...

Statement-1: If `a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8)`
Statement-2: `"log"_(b) a = (1)/("log"_(a)b)`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze Statement-1 and verify its correctness step by step. ### Step 1: Understand the given variables We have: - \( a = y^2 \) - \( b = z^2 \) - \( c = x^2 \) ### Step 2: Rewrite the logarithmic expressions We need to evaluate: \[ \log_a (x^3) \cdot \log_b (y^3) \cdot \log_c (z^3) \] Using the change of base formula for logarithms, we can rewrite each logarithm: \[ \log_a (x^3) = \frac{\log(x^3)}{\log(a)} = \frac{3 \log(x)}{\log(y^2)} = \frac{3 \log(x)}{2 \log(y)} \] \[ \log_b (y^3) = \frac{\log(y^3)}{\log(b)} = \frac{3 \log(y)}{\log(z^2)} = \frac{3 \log(y)}{2 \log(z)} \] \[ \log_c (z^3) = \frac{\log(z^3)}{\log(c)} = \frac{3 \log(z)}{\log(x^2)} = \frac{3 \log(z)}{2 \log(x)} \] ### Step 3: Substitute back into the expression Now substituting these back into the original expression: \[ \log_a (x^3) \cdot \log_b (y^3) \cdot \log_c (z^3) = \left(\frac{3 \log(x)}{2 \log(y)}\right) \cdot \left(\frac{3 \log(y)}{2 \log(z)}\right) \cdot \left(\frac{3 \log(z)}{2 \log(x)}\right) \] ### Step 4: Simplify the expression Multiplying these together: \[ = \frac{3 \log(x)}{2 \log(y)} \cdot \frac{3 \log(y)}{2 \log(z)} \cdot \frac{3 \log(z)}{2 \log(x)} \] Notice that \( \log(x) \), \( \log(y) \), and \( \log(z) \) will cancel out: \[ = \frac{3 \cdot 3 \cdot 3}{2 \cdot 2 \cdot 2} = \frac{27}{8} \] ### Conclusion Thus, we have shown that: \[ \log_a (x^3) \cdot \log_b (y^3) \cdot \log_c (z^3) = \frac{27}{8} \] This confirms that Statement-1 is true. ### Step 5: Verify Statement-2 Statement-2 states: \[ \log_b a = \frac{1}{\log_a b} \] This is indeed a property of logarithms and is true. However, it was not used in the proof of Statement-1. ### Final Answer - Statement-1 is true. - Statement-2 is true but does not explain Statement-1.

To solve the given problem, we will analyze Statement-1 and verify its correctness step by step. ### Step 1: Understand the given variables We have: - \( a = y^2 \) - \( b = z^2 \) - \( c = x^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z) is

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: If a=y^2,\ b=z^2, c=x^2,\ t h e n8(log)_a x^3dot(log)_b y^3dot(log)_c z^3=27 Statement II: (log)_b adot(log)_c b=(log)_c a ,\ also (log)_b a=1/("log"_a b) a. A b. \ B c. \ C d. D

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

If "log"_(2) a + "log"_(4) b + "log"_(4) c = 2 "log"_(9) a + "log"_(3) b + "log"_(9) c = 2 "log"_(16) a + "log"_(16) b + "log"_(4) c =2 , then

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)