Home
Class 11
MATHS
Statemen-1: If x lt 1, then the least va...

Statemen-1: If `x lt 1`, then the least value of `"log"_(2)x^(3) - "log"_(x) (0.125)" is "6`.

Text Solution

AI Generated Solution

To solve the problem step by step, we need to analyze the expression given and apply logarithmic properties to find the least value. ### Step 1: Rewrite the expression The expression we need to evaluate is: \[ \log_2(x^3) - \log_x(0.125) \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Find the least value of log_2x-log_x(0.125) for xgt1 .

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

The value of x, log_(1/2)x >= log_(1/3)x is

if log_2 x+ log_2 y >= 6 then the least value of x+y

If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

Given log_(x)25 - log_(x) 5 = 2 - "log"_(x) (1)/(125) , find x.

If (log)_2x+(log)_2ygeq6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

If "log"_(3) {"log"_(6)((x^(2) +x)/(x-1))} =0 then x =

If |x| lt 1 then coefficient of x^(2) in (log(1+x))/((1-x)^(2)) is