Home
Class 11
MATHS
Statement-1 : If x^("log"(x) (3-x)^(2)) ...

Statement-1 : If `x^("log"_(x) (3-x)^(2)) = 25,` then x =-2
Statement-2: `a^("log"_(a) x) = x,"if" a gt 0, x gt 0 " and " a ne 1`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

`x^("log"_(x)(3-x)^(2)) = 25`
`rArr (3-x)^(2) = 25 " provided that" x gt 0 " and " x ne 1, x ne 3`
`rArr 3-x = +-5 " "[because a^("log"_(a)x) = x]`
`rArr x =-2, x =8`
Hence, statement-2 is true but statement-1 is false.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|70 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Statement-1: 3^("log"_(2) 7) -7^("log"_(2)3) = 0 Statement-2: x^("log"_(a)y) = y^("log"_(a)x), " where "x gt 0, y gt 0" and "a gt 0, a ne 1

If "log"_(4)(3x^(2) +11x) gt 1 , then x lies in the interval

If "log"_(3) {"log"_(6)((x^(2) +x)/(x-1))} =0 then x =

"log" ("log"x), x gt 1

Statement-1: 0 lt x lt y rArr "log"_(a) x gt "log"_(a) y, where a gt 1 Statement-2: "When" a gt 1, "log"_(a) x is an increasing function.

Statement-1: "log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x Statement-2: x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1

Statement 1 : f(x)=log_(e+x) (pi+x) is strictly increasing for all . Statement 2 : pi+x gt e+x, AA x gt 0

Statement -1: 0 lt x lt y rArr "log"_(a) x gt "log"_(a) y,"where" 0 lt a lt 1 Statement-2: "log"_(a) x is a decreasing function when 0 lt a lt 1.

Statement-1 : f(x) = log_(10)(log_(1/x)x) will not be defined for any value of x. and Statement -2 : log_(1//x)x = -1, AA x gt 0, x != 1

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .