Home
Class 12
MATHS
lim(xrarr0) (sin(picos^2x))/(x^2) equals...

`lim_(xrarr0) (sin(picos^2x))/(x^2)` equals

A

`-pi`

B

`pi`

C

`(pi)/(2)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \), we will follow these steps: ### Step 1: Substitute \(\cos^2 x\) We know that \( \cos^2 x = 1 - \sin^2 x \). So we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin(\pi (1 - \sin^2 x))}{x^2} \] ### Step 2: Simplify the sine expression Using the identity \( \sin(a - b) = \sin a \cos b - \cos a \sin b \), we can express: \[ \sin(\pi (1 - \sin^2 x)) = \sin(\pi - \pi \sin^2 x) = \sin(\pi \sin^2 x) \] Thus, our limit becomes: \[ \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{x^2} \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} \cdot \frac{\pi \sin^2 x}{x^2} \] ### Step 4: Analyze the first part of the limit The first part, \( \frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} \), approaches 1 as \( x \to 0 \) because \( \sin(h) \approx h \) when \( h \) is small. Therefore: \[ \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} = 1 \] ### Step 5: Analyze the second part of the limit Next, we need to evaluate \( \frac{\pi \sin^2 x}{x^2} \). Using the limit property \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we have: \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2 = 1^2 = 1 \] Thus, \[ \lim_{x \to 0} \frac{\pi \sin^2 x}{x^2} = \pi \] ### Step 6: Combine the results Combining both parts, we get: \[ \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{x^2} = 1 \cdot \pi = \pi \] ### Final Answer Therefore, the value of the limit is: \[ \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} = \pi \] ---

To solve the limit \( \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \), we will follow these steps: ### Step 1: Substitute \(\cos^2 x\) We know that \( \cos^2 x = 1 - \sin^2 x \). So we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin(\pi (1 - \sin^2 x))}{x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0) (xcos x-log(1+x))/(x^2) equals

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. For x in R ,("lim")(xvecoo)((x-3)/(x+2))^xi se q u a lto e (b) e^(-...

    Text Solution

    |

  2. lim(xrarr0) (sin(picos^2x))/(x^2) equals

    Text Solution

    |

  3. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  4. Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim(x->0)((f...

    Text Solution

    |

  5. lim(nrarr oo) (a^nb^n)/(a^n+b^n), where 1lt b lt a , is equal to

    Text Solution

    |

  6. lim(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

    Text Solution

    |

  7. Evaluate a,b,c and d if lim(xto oo)(sqrt(x^(4)+ax^(3)+3x^(2)+bx+2)-s...

    Text Solution

    |

  8. if lim(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, th...

    Text Solution

    |

  9. lim(nto oo) (2^n+5^n)^(1//n) is equal to

    Text Solution

    |

  10. lim(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer le...

    Text Solution

    |

  11. lim(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer fu...

    Text Solution

    |

  12. lim(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the grea...

    Text Solution

    |

  13. If a .lim(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

    Text Solution

    |

  14. lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

    Text Solution

    |

  15. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  16. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  17. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  18. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  19. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  20. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |