Home
Class 12
MATHS
lim(nrarr oo) (a^nb^n)/(a^n+b^n), where ...

`lim_(nrarr oo) (a^n_b^n)/(a^n+b^n)`, where `1lt b lt a `, is equal to

A

`1`

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \(\lim_{n \to \infty} \frac{a^n - b^n}{a^n + b^n}\) where \(1 < b < a\), we can follow these steps: ### Step 1: Analyze the limit as \(n\) approaches infinity As \(n\) approaches infinity, both \(a^n\) and \(b^n\) grow, but since \(a > b\), \(a^n\) will dominate \(b^n\). Thus, we can express the limit as: \[ \lim_{n \to \infty} \frac{a^n - b^n}{a^n + b^n} \] ### Step 2: Factor out \(a^n\) from both the numerator and the denominator To simplify the expression, we can factor \(a^n\) out of both the numerator and the denominator: \[ = \lim_{n \to \infty} \frac{a^n(1 - \frac{b^n}{a^n})}{a^n(1 + \frac{b^n}{a^n})} \] ### Step 3: Simplify the expression Now, we can cancel \(a^n\) from the numerator and the denominator: \[ = \lim_{n \to \infty} \frac{1 - \frac{b^n}{a^n}}{1 + \frac{b^n}{a^n}} \] ### Step 4: Evaluate \(\frac{b^n}{a^n}\) Since \(b < a\), we have \(\frac{b}{a} < 1\). Therefore, as \(n\) approaches infinity, \(\left(\frac{b}{a}\right)^n\) approaches 0: \[ \lim_{n \to \infty} \frac{b^n}{a^n} = 0 \] ### Step 5: Substitute back into the limit Substituting this back into our limit gives: \[ = \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1 \] ### Conclusion Thus, the limit is: \[ \lim_{n \to \infty} \frac{a^n - b^n}{a^n + b^n} = 1 \]

To solve the limit \(\lim_{n \to \infty} \frac{a^n - b^n}{a^n + b^n}\) where \(1 < b < a\), we can follow these steps: ### Step 1: Analyze the limit as \(n\) approaches infinity As \(n\) approaches infinity, both \(a^n\) and \(b^n\) grow, but since \(a > b\), \(a^n\) will dominate \(b^n\). Thus, we can express the limit as: \[ \lim_{n \to \infty} \frac{a^n - b^n}{a^n + b^n} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)3^(1/n) equals

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt is

Lt_(n rarr oo)(1+(1)/(n))^(n)

Lt_(n rarr oo)(1+(1)/(n))^(n)

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

lim_(n->oo) nsin(1/n)

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n to oo)(n!)/((n+1)!-n!)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  2. Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim(x->0)((f...

    Text Solution

    |

  3. lim(nrarr oo) (a^nb^n)/(a^n+b^n), where 1lt b lt a , is equal to

    Text Solution

    |

  4. lim(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

    Text Solution

    |

  5. Evaluate a,b,c and d if lim(xto oo)(sqrt(x^(4)+ax^(3)+3x^(2)+bx+2)-s...

    Text Solution

    |

  6. if lim(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, th...

    Text Solution

    |

  7. lim(nto oo) (2^n+5^n)^(1//n) is equal to

    Text Solution

    |

  8. lim(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer le...

    Text Solution

    |

  9. lim(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer fu...

    Text Solution

    |

  10. lim(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the grea...

    Text Solution

    |

  11. If a .lim(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

    Text Solution

    |

  12. lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

    Text Solution

    |

  13. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  14. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  16. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  17. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  18. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  19. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  20. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |