Home
Class 12
MATHS
lim(xrarr oo) (log[x])/(x) , where [x] d...

`lim_(xrarr oo) (log[x])/(x)` , where `[x]` denotes the greatest integer less than or equal to x, is

A

0

B

1

C

-1

D

non-existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{\log[x]}{x} \), where \([x]\) denotes the greatest integer less than or equal to \(x\), we can follow these steps: ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) gives us the largest integer less than or equal to \(x\). For large values of \(x\), we can express \(x\) as \(n + k\), where \(n\) is an integer and \(k\) is a small fractional part such that \(0 \leq k < 1\). Thus, we have: \[ [x] = n \] ### Step 2: Rewrite the Limit Now we can rewrite the limit: \[ \lim_{x \to \infty} \frac{\log[x]}{x} = \lim_{n \to \infty} \frac{\log n}{n + k} \] As \(x\) approaches infinity, \(n\) also approaches infinity, and \(k\) becomes negligible. ### Step 3: Analyze the Form of the Limit The expression \(\frac{\log n}{n + k}\) approaches the form \(\frac{\infty}{\infty}\) as \(n\) approaches infinity. This allows us to use L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of \(\log n\) is \(\frac{1}{n}\). - The derivative of \(n + k\) is \(1\) (since \(k\) is a constant with respect to \(n\)). Thus, we have: \[ \lim_{n \to \infty} \frac{\log n}{n + k} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \lim_{n \to \infty} \frac{1}{n} \] ### Step 5: Evaluate the Limit As \(n\) approaches infinity, \(\frac{1}{n}\) approaches \(0\): \[ \lim_{n \to \infty} \frac{1}{n} = 0 \] ### Conclusion Therefore, the limit is: \[ \lim_{x \to \infty} \frac{\log[x]}{x} = 0 \]

To solve the limit \( \lim_{x \to \infty} \frac{\log[x]}{x} \), where \([x]\) denotes the greatest integer less than or equal to \(x\), we can follow these steps: ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) gives us the largest integer less than or equal to \(x\). For large values of \(x\), we can express \(x\) as \(n + k\), where \(n\) is an integer and \(k\) is a small fractional part such that \(0 \leq k < 1\). Thus, we have: \[ [x] = n \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

Examine Lim_(xto 2) [ x] , where [ x] denotes the greatest integar less than or equal to x.

If [x] denotes the greatest integer less than or equal to x, then ["log"_(10) 6730.4]=

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

The domain of the function f(x) = sqrt((4-x^(2))/([x]+2)) where [x] denotes the greatest integer less than or equal to x,is

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integers less than or equal to x is defined for all x belonging to

lim(x->a_-) {(|x|^3)/a-[x/a]^3} ,(a < 0) , where [x] denotes the greatest integer less than or equal to x is equal to:

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. if lim(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, th...

    Text Solution

    |

  2. lim(nto oo) (2^n+5^n)^(1//n) is equal to

    Text Solution

    |

  3. lim(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer le...

    Text Solution

    |

  4. lim(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer fu...

    Text Solution

    |

  5. lim(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the grea...

    Text Solution

    |

  6. If a .lim(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

    Text Solution

    |

  7. lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

    Text Solution

    |

  8. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  10. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  11. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  12. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  13. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  14. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  15. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  16. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  17. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  18. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  19. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  20. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |