Home
Class 12
MATHS
lim(xrarr oo) (logx^n-[x])/([x]) where n...

`lim_(xrarr oo) (logx^n-[x])/([x])` where `n in N and [.]` denotes the greatest integer function, is

A

1

B

-1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \frac{\log x^n - [x]}{[x]} \), where \( n \in \mathbb{N} \) and \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the logarithmic term: \[ \log x^n = n \log x \] Thus, the limit can be rewritten as: \[ \lim_{x \to \infty} \frac{n \log x - [x]}{[x]} \] ### Step 2: Analyze the behavior of \([x]\) As \( x \to \infty \), the greatest integer function \([x]\) approaches \( x \) because \([x] = x - \{x\}\), where \(\{x\}\) is the fractional part of \( x \). Therefore, we can approximate: \[ [x] \approx x \] ### Step 3: Substitute the approximation into the limit Now substituting \([x] \approx x\) into our limit gives: \[ \lim_{x \to \infty} \frac{n \log x - x}{x} \] ### Step 4: Simplify the limit This simplifies to: \[ \lim_{x \to \infty} \left( \frac{n \log x}{x} - 1 \right) \] ### Step 5: Evaluate the limit of \(\frac{n \log x}{x}\) To evaluate \(\lim_{x \to \infty} \frac{n \log x}{x}\), we can use L'Hôpital's rule since both the numerator and denominator approach infinity: 1. Differentiate the numerator: \( \frac{d}{dx}(n \log x) = \frac{n}{x} \) 2. Differentiate the denominator: \( \frac{d}{dx}(x) = 1 \) Applying L'Hôpital's rule: \[ \lim_{x \to \infty} \frac{n \log x}{x} = \lim_{x \to \infty} \frac{n/x}{1} = \lim_{x \to \infty} \frac{n}{x} = 0 \] ### Step 6: Final limit evaluation Now substituting this back into our expression: \[ \lim_{x \to \infty} \left( \frac{n \log x}{x} - 1 \right) = 0 - 1 = -1 \] ### Conclusion Thus, the final result is: \[ \lim_{x \to \infty} \frac{\log x^n - [x]}{[x]} = -1 \]

To solve the limit problem \( \lim_{x \to \infty} \frac{\log x^n - [x]}{[x]} \), where \( n \in \mathbb{N} \) and \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the logarithmic term: \[ \log x^n = n \log x \] Thus, the limit can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

lim_(xto0)[m(sinx)/x] is equal to (where m epsilon I and [.] denotes greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. lim(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer le...

    Text Solution

    |

  2. lim(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer fu...

    Text Solution

    |

  3. lim(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the grea...

    Text Solution

    |

  4. If a .lim(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

    Text Solution

    |

  5. lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

    Text Solution

    |

  6. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  7. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  8. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  9. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  10. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  11. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  12. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  13. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  14. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  15. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  16. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  17. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  18. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  19. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  20. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |