Home
Class 12
MATHS
lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) ...

`lim_(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|)` is equaol to

A

2

B

`sin 2`

C

`2sin2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to -1} \frac{\cos 2 - \cos 2x}{x^2 - |x|} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit: \[ \lim_{x \to -1} \frac{\cos 2 - \cos 2x}{x^2 - |x|} \] Since \( x \) is approaching \(-1\), we note that \( |x| = -x \) when \( x < 0 \). Thus, we can rewrite the denominator: \[ x^2 - |x| = x^2 + x \] So the limit becomes: \[ \lim_{x \to -1} \frac{\cos 2 - \cos 2x}{x^2 + x} \] ### Step 2: Use the cosine difference identity We can use the identity for the difference of cosines: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] In our case, let \( A = 2 \) and \( B = 2x \): \[ \cos 2 - \cos 2x = -2 \sin\left(\frac{2 + 2x}{2}\right) \sin\left(\frac{2 - 2x}{2}\right) = -2 \sin(1 + x) \sin(1 - x) \] Thus, the limit now looks like: \[ \lim_{x \to -1} \frac{-2 \sin(1 + x) \sin(1 - x)}{x^2 + x} \] ### Step 3: Substitute the denominator Now substitute \( x^2 + x \): \[ x^2 + x = x(x + 1) \] So we have: \[ \lim_{x \to -1} \frac{-2 \sin(1 + x) \sin(1 - x)}{x(x + 1)} \] ### Step 4: Evaluate the limit As \( x \to -1 \): - \( 1 + x \to 0 \) - \( 1 - x \to 2 \) Thus, we can evaluate the limit: \[ \lim_{x \to -1} \frac{-2 \sin(1 + x) \sin(1 - x)}{x(x + 1)} = \lim_{x \to -1} \frac{-2 \sin(0) \sin(2)}{x(x + 1)} \] Since \( \sin(0) = 0 \), the numerator approaches \( 0 \). ### Step 5: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: Differentiate the numerator and denominator: - Derivative of the numerator: \[ \frac{d}{dx}[-2 \sin(1 + x) \sin(1 - x)] = -2 \left( \cos(1 + x) \sin(1 - x) - \sin(1 + x) \cos(1 - x) \right) \] - Derivative of the denominator: \[ \frac{d}{dx}[x(x + 1)] = 2x + 1 \] ### Step 6: Evaluate the derivatives at \( x = -1 \) Now we evaluate: \[ \lim_{x \to -1} \frac{-2 \left( \cos(1 - 1) \sin(1 + 1) - \sin(1 - 1) \cos(1 + 1) \right)}{2(-1) + 1} \] This simplifies to: \[ \lim_{x \to -1} \frac{-2 \left( \cos(0) \sin(2) - 0 \cdot \cos(2) \right)}{-1} = \frac{-2(1)(\sin(2))}{-1} = 2 \sin(2) \] ### Final Result Thus, the limit is: \[ \boxed{2 \sin(2)} \]

To solve the limit \( \lim_{x \to -1} \frac{\cos 2 - \cos 2x}{x^2 - |x|} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit: \[ \lim_{x \to -1} \frac{\cos 2 - \cos 2x}{x^2 - |x|} \] Since \( x \) is approaching \(-1\), we note that \( |x| = -x \) when \( x < 0 \). Thus, we can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (cos ec x -cot x)

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

lim_(x to 0) (cos 2x-1)/(cos x-1)

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. lim(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the grea...

    Text Solution

    |

  2. If a .lim(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

    Text Solution

    |

  3. lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

    Text Solution

    |

  4. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  6. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  7. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  8. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  9. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  10. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  11. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  12. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  13. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  14. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  15. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  16. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  17. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  18. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  19. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  20. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |