Home
Class 12
MATHS
Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x i...

`Lim_(x->oo) ((x/(x+1))^a + sin (1/x))^x` is equal to

A

`e^a-1`

B

`e^1-a`

C

`e`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)^x \), we will break it down step by step. ### Step 1: Analyze the limit of each component as \( x \to \infty \) 1. **Evaluate \( \frac{x}{x+1} \)**: \[ \frac{x}{x+1} = \frac{x}{x(1 + \frac{1}{x})} = \frac{1}{1 + \frac{1}{x}} \to 1 \quad \text{as } x \to \infty \] 2. **Evaluate \( \sin \left( \frac{1}{x} \right) \)**: \[ \sin \left( \frac{1}{x} \right) \to \sin(0) = 0 \quad \text{as } x \to \infty \] ### Step 2: Substitute the limits into the expression Now substituting these limits into the original expression: \[ \left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)^x \to \left( 1^a + 0 \right)^x = 1^x = 1 \] ### Step 3: Identify the indeterminate form However, we need to be careful because we are dealing with the limit of the form \( (1 + 0)^x \) as \( x \to \infty \). This is an indeterminate form \( 1^\infty \). ### Step 4: Rewrite the expression To resolve this, we can rewrite the expression using the exponential function: \[ \lim_{x \to \infty} \left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)^x = \lim_{x \to \infty} e^{x \ln\left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)} \] ### Step 5: Find the limit of the logarithm Now we need to evaluate: \[ \lim_{x \to \infty} x \ln\left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right) \] ### Step 6: Simplify the logarithm As \( x \to \infty \): \[ \left( \frac{x}{x+1} \right)^a \to 1 \quad \text{and} \quad \sin \left( \frac{1}{x} \right) \to 0 \] Thus, \[ \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \to 1 + 0 = 1 \] ### Step 7: Expand the logarithm Using the Taylor expansion for \( \ln(1 + u) \) where \( u \to 0 \): \[ \ln\left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right) \approx \ln(1) + \frac{u}{1} = 0 + u \] ### Step 8: Evaluate the limit We can now evaluate: \[ x \ln\left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right) \to x \left( \left( \frac{x}{x+1} \right)^a - 1 + \sin \left( \frac{1}{x} \right) \right) \] ### Step 9: Final limit evaluation As \( x \to \infty \): \[ \left( \frac{x}{x+1} \right)^a \approx 1 - \frac{a}{x} \quad \text{and} \quad \sin \left( \frac{1}{x} \right) \approx \frac{1}{x} \] Thus, \[ x \left( -\frac{a}{x} + \frac{1}{x} \right) = -a + 1 \] ### Step 10: Conclude the limit Finally, we have: \[ \lim_{x \to \infty} e^{x \ln\left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)} = e^{1 - a} \] ### Final Answer The limit is: \[ \lim_{x \to \infty} \left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)^x = e^{1-a} \]

To solve the limit problem \( \lim_{x \to \infty} \left( \left( \frac{x}{x+1} \right)^a + \sin \left( \frac{1}{x} \right) \right)^x \), we will break it down step by step. ### Step 1: Analyze the limit of each component as \( x \to \infty \) 1. **Evaluate \( \frac{x}{x+1} \)**: \[ \frac{x}{x+1} = \frac{x}{x(1 + \frac{1}{x})} = \frac{1}{1 + \frac{1}{x}} \to 1 \quad \text{as } x \to \infty \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

lim_(xrarr oo) ((x+5)/(x-1))^(x) is equal to

The value of lim_(xrarroo)[(e)/((1+(1)/(x))^(x))]^(x) is equal to

lim_(x->oo)sin(1/x)/(1/x)

lim_(xto oo)(x/(1+x))^(x) is

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

lim_(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x is equal to

Evaluate the following limits : Lim_(x to oo) sqrt(((x+sin x)/(x- cos x))) is equal to

lim_(xrarr oo) (1-(4)/(x-1))^(3x-1) is equal to

lim_(x to 0) (sin x^(@))/( x) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If a .lim(xrarr 1) x^(1//1-x)+b=e^(-1)(a ge 1,bge 0) , then

    Text Solution

    |

  2. lim(xrarr -1) (cos 2 -cos 2x)/(x^2-|x|) is equaol to

    Text Solution

    |

  3. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  4. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  6. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  7. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  8. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  9. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  10. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  11. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  12. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  13. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  14. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  15. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  16. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  17. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  18. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  19. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  20. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |