Home
Class 12
MATHS
If {x} denotes the fractional part of x,...

If `{x}` denotes the fractional part of x, then `lim_(xrarr1) (x sin {x})/(x-1)`, is

A

0

B

-1

C

non-extistent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 1} \frac{x \sin \{x\}}{x - 1} \), where \(\{x\}\) denotes the fractional part of \(x\), we will analyze the limit from both the right-hand side and the left-hand side. ### Step-by-Step Solution: 1. **Right-Hand Limit**: We will first calculate the right-hand limit as \(x\) approaches 1 from the right, i.e., \(x \to 1^+\). - Let \(x = 1 + h\) where \(h \to 0^+\). - The fractional part \(\{x\} = \{1 + h\} = h\). - Substitute into the limit: \[ \lim_{h \to 0^+} \frac{(1 + h) \sin(h)}{(1 + h) - 1} = \lim_{h \to 0^+} \frac{(1 + h) \sin(h)}{h} \] - This can be rewritten as: \[ \lim_{h \to 0^+} \left( (1 + h) \cdot \frac{\sin(h)}{h} \right) \] - As \(h \to 0\), \(\frac{\sin(h)}{h} \to 1\), so: \[ \lim_{h \to 0^+} (1 + h) \cdot 1 = 1 + 0 = 1 \] 2. **Left-Hand Limit**: Now, we calculate the left-hand limit as \(x\) approaches 1 from the left, i.e., \(x \to 1^-\). - Let \(x = 1 - h\) where \(h \to 0^+\). - The fractional part \(\{x\} = \{1 - h\} = 1 - h\). - Substitute into the limit: \[ \lim_{h \to 0^+} \frac{(1 - h) \sin(1 - h)}{(1 - h) - 1} = \lim_{h \to 0^+} \frac{(1 - h) \sin(1 - h)}{-h} \] - This can be rewritten as: \[ \lim_{h \to 0^+} -\frac{(1 - h) \sin(1 - h)}{h} \] - As \(h \to 0\), \(\sin(1 - h) \to \sin(1)\), so: \[ \lim_{h \to 0^+} -\frac{(1 - h) \sin(1)}{h} = -\infty \] 3. **Conclusion**: Since the right-hand limit is \(1\) and the left-hand limit is \(-\infty\), we conclude that the limits do not match: \[ \lim_{x \to 1} \frac{x \sin \{x\}}{x - 1} \text{ does not exist.} \] ### Final Answer: The limit does not exist.

To solve the limit problem \( \lim_{x \to 1} \frac{x \sin \{x\}}{x - 1} \), where \(\{x\}\) denotes the fractional part of \(x\), we will analyze the limit from both the right-hand side and the left-hand side. ### Step-by-Step Solution: 1. **Right-Hand Limit**: We will first calculate the right-hand limit as \(x\) approaches 1 from the right, i.e., \(x \to 1^+\). - Let \(x = 1 + h\) where \(h \to 0^+\). - The fractional part \(\{x\} = \{1 + h\} = h\). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

lim_(xrarr0)(sin(x)/(4))/(x)

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr1)(sqrt1-cos2(x-1))/(x-1) , is

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. Lim(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to

    Text Solution

    |

  2. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  3. If {x} denotes the fractional part of x, then lim(xrarr1) (x sin {x})/...

    Text Solution

    |

  4. lim(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

    Text Solution

    |

  5. If alpha and beta are roots of the equation ax^2+bx +c=0, then lim(xr...

    Text Solution

    |

  6. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  7. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  8. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  9. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  10. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  11. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  12. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  13. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  14. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  15. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  16. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  17. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  18. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |

  19. If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the f...

    Text Solution

    |

  20. The value of lim(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+.......

    Text Solution

    |