Home
Class 12
MATHS
If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 ...

If F(x) = `{(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2,` where {.} represents the fractional part function, then `lim_(xto pi//2)f(x)` is

A

`-1`

B

1

C

non-existant

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} F(x) \) where \[ F(x) = \begin{cases} \frac{\sin(\{ \cos x \})}{x - \frac{\pi}{2}}, & x \neq \frac{\pi}{2} \\ 1, & x = \frac{\pi}{2} \end{cases} \] we need to evaluate the limit as \( x \) approaches \( \frac{\pi}{2} \) from both sides. ### Step 1: Evaluate the Right-Hand Limit (RHL) We start by calculating the right-hand limit as \( x \) approaches \( \frac{\pi}{2} \) from the positive side: \[ \lim_{x \to \frac{\pi}{2}^+} F(x) = \lim_{x \to \frac{\pi}{2}^+} \frac{\sin(\{ \cos x \})}{x - \frac{\pi}{2}} \] ### Step 2: Determine \( \cos x \) as \( x \to \frac{\pi}{2}^+ \) As \( x \) approaches \( \frac{\pi}{2} \) from the right, \( \cos x \) approaches \( 0 \) from the negative side (since \( \cos \) is decreasing in this interval): \[ \cos\left(\frac{\pi}{2}^+\right) \to 0^- \] ### Step 3: Find the Fractional Part The fractional part function \( \{ \cos x \} \) is defined as \( \cos x - \lfloor \cos x \rfloor \). Since \( \cos x \) approaches \( 0^- \), we have: \[ \{ \cos x \} = 1 + \cos x \quad \text{(because } \lfloor \cos x \rfloor = -1 \text{ for } \cos x < 0\text{)} \] Thus, as \( x \to \frac{\pi}{2}^+ \): \[ \{ \cos x \} \to 1 + 0^- = 1 \] ### Step 4: Substitute into the Limit Now substituting back into the limit: \[ \lim_{x \to \frac{\pi}{2}^+} F(x) = \lim_{x \to \frac{\pi}{2}^+} \frac{\sin(1)}{x - \frac{\pi}{2}} \] As \( x \to \frac{\pi}{2}^+ \), \( x - \frac{\pi}{2} \to 0^+ \). Therefore, the limit becomes: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{\sin(1)}{x - \frac{\pi}{2}} \to \infty \] ### Step 5: Evaluate the Left-Hand Limit (LHL) Now, we calculate the left-hand limit as \( x \) approaches \( \frac{\pi}{2} \) from the negative side: \[ \lim_{x \to \frac{\pi}{2}^-} F(x) = \lim_{x \to \frac{\pi}{2}^-} \frac{\sin(\{ \cos x \})}{x - \frac{\pi}{2}} \] As \( x \) approaches \( \frac{\pi}{2} \) from the left, \( \cos x \) approaches \( 0 \) from the positive side: \[ \cos\left(\frac{\pi}{2}^-\right) \to 0^+ \] Thus, the fractional part becomes: \[ \{ \cos x \} = \cos x \quad \text{(because } \lfloor \cos x \rfloor = 0 \text{ for } \cos x \geq 0\text{)} \] So we have: \[ \lim_{x \to \frac{\pi}{2}^-} F(x) = \lim_{x \to \frac{\pi}{2}^-} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} \] As \( x \to \frac{\pi}{2}^- \), \( \cos x \to 0^+ \) and thus \( \sin(\cos x) \to \sin(0) = 0 \). ### Step 6: Evaluate the Limit Now substituting back into the limit: \[ \lim_{x \to \frac{\pi}{2}^-} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} \to \frac{0}{0^-} \to 0 \] ### Conclusion Since the right-hand limit approaches \( \infty \) and the left-hand limit approaches \( 0 \), we conclude that: \[ \lim_{x \to \frac{\pi}{2}} F(x) \text{ does not exist.} \] ### Final Answer The limit \( \lim_{x \to \frac{\pi}{2}} F(x) \) does not exist. ---

To solve the limit \( \lim_{x \to \frac{\pi}{2}} F(x) \) where \[ F(x) = \begin{cases} \frac{\sin(\{ \cos x \})}{x - \frac{\pi}{2}}, & x \neq \frac{\pi}{2} \\ 1, & x = \frac{\pi}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):}, where {k} represents the fractional park of k, then:

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7) , where {} is a fractional part of x , then

f(x)=sin[x]+[sin x],0 < x < pi/2 (where [.] represents the greatest integer function), can also be represented as

if f(x) ={{:(cos^-1 {cos x},xlt(pi)/(2)),( pi[x]-1,x ge (pi)/(2) ):}. where [.] repesents greatest funcrtion and {.} represents fractional part function , then discuss the continuity of f(x) at x=(pi)/(2).

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim(xto...

    Text Solution

    |

  2. The value of ("lim")(xvec0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] ...

    Text Solution

    |

  3. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  4. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  5. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  6. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  7. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  8. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  9. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  10. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  11. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  12. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  13. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |

  14. If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the f...

    Text Solution

    |

  15. The value of lim(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+.......

    Text Solution

    |

  16. If l =lim(xrarr0) (tanx^(n))/((tanx)^m), where m,n in N, then

    Text Solution

    |

  17. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  18. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  19. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  20. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |