Home
Class 12
MATHS
lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0)...

`lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0)`, where `[x]` denotes the greatest integer less than or equal to `x` is equal to:

A

`a^2-3`

B

`a^2-1`

C

`a^2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to a^-} \left( \frac{|x|^3}{a} - \left[\frac{x}{a}\right]^3 \right) \) where \( a > 0 \), we will break it down step by step. ### Step 1: Analyze the limit as \( x \) approaches \( a \) from the left As \( x \to a^- \), \( x \) is approaching \( a \) but is always less than \( a \). Therefore, we can express \( x \) as \( x = a - \epsilon \) where \( \epsilon \) is a small positive number. ### Step 2: Evaluate \( |x|^3 \) Since \( a > 0 \) and \( x \) is approaching \( a \) from the left, we have: \[ |x| = x \quad \text{(because \( x \) is positive)} \] Thus, \[ |x|^3 = x^3 = (a - \epsilon)^3 \] ### Step 3: Expand \( (a - \epsilon)^3 \) Using the binomial expansion: \[ (a - \epsilon)^3 = a^3 - 3a^2\epsilon + 3a\epsilon^2 - \epsilon^3 \] ### Step 4: Evaluate \( \left[\frac{x}{a}\right] \) Now, we need to evaluate \( \left[\frac{x}{a}\right] \): \[ \frac{x}{a} = \frac{a - \epsilon}{a} = 1 - \frac{\epsilon}{a} \] Since \( \epsilon \) is a small positive number, \( \frac{\epsilon}{a} \) is also small and positive. Therefore: \[ \left[\frac{x}{a}\right] = 0 \quad \text{(as it is the greatest integer less than or equal to \( 1 - \frac{\epsilon}{a} \))} \] ### Step 5: Substitute into the limit expression Now substituting back into the limit: \[ \lim_{x \to a^-} \left( \frac{(a - \epsilon)^3}{a} - 0^3 \right) = \lim_{x \to a^-} \frac{(a - \epsilon)^3}{a} \] This simplifies to: \[ \lim_{x \to a^-} \frac{a^3 - 3a^2\epsilon + 3a\epsilon^2 - \epsilon^3}{a} \] ### Step 6: Simplify the expression Breaking it down: \[ \frac{(a - \epsilon)^3}{a} = \frac{a^3}{a} - \frac{3a^2\epsilon}{a} + \frac{3a\epsilon^2}{a} - \frac{\epsilon^3}{a} \] This simplifies to: \[ a^2 - 3\epsilon + 3\frac{\epsilon^2}{a} - \frac{\epsilon^3}{a} \] ### Step 7: Take the limit as \( \epsilon \to 0 \) As \( \epsilon \to 0 \): \[ \lim_{\epsilon \to 0} \left( a^2 - 3\epsilon + 3\frac{\epsilon^2}{a} - \frac{\epsilon^3}{a} \right) = a^2 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to a^-} \left( \frac{|x|^3}{a} - \left[\frac{x}{a}\right]^3 \right) = a^2 \] ### Final Answer The limit is \( a^2 \). ---

To solve the limit \( \lim_{x \to a^-} \left( \frac{|x|^3}{a} - \left[\frac{x}{a}\right]^3 \right) \) where \( a > 0 \), we will break it down step by step. ### Step 1: Analyze the limit as \( x \) approaches \( a \) from the left As \( x \to a^- \), \( x \) is approaching \( a \) but is always less than \( a \). Therefore, we can express \( x \) as \( x = a - \epsilon \) where \( \epsilon \) is a small positive number. ### Step 2: Evaluate \( |x|^3 \) Since \( a > 0 \) and \( x \) is approaching \( a \) from the left, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

Examine Lim_(xto 2) [ x] , where [ x] denotes the greatest integar less than or equal to x.

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

If [x] denotes the greatest integer less than or equal to*, then [(1 + 0.0001)^10000] equals

If [x] denotes the greatest integer less than or equal to x, then ["log"_(10) 6730.4]=

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer less than or equal to x, then int_(-2)^(2) f(x) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} repres...

    Text Solution

    |

  2. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  3. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  4. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  5. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  6. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  7. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  8. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  9. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  10. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  11. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |

  12. If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the f...

    Text Solution

    |

  13. The value of lim(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+.......

    Text Solution

    |

  14. If l =lim(xrarr0) (tanx^(n))/((tanx)^m), where m,n in N, then

    Text Solution

    |

  15. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  16. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  17. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  18. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |

  19. If the graph of the function y=f(x) has a unique tangent at the point ...

    Text Solution

    |

  20. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |