Home
Class 12
MATHS
lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltp...

`lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1`, is equal to

A

0

B

`oo`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n + 1} \) where \( 0 < p < 1 \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit expression: \[ \lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n + 1} \] We can simplify the denominator by dividing both the numerator and the denominator by \( n \): \[ = \lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n(1 + \frac{1}{n})} \] ### Step 2: Simplify the Expression This gives us: \[ = \lim_{n \to \infty} \frac{n^{p-1} \sin^2(n!)}{1 + \frac{1}{n}} \] Here, we notice that as \( n \to \infty \), \( 1 + \frac{1}{n} \) approaches 1. So we can focus on the numerator: \[ = \lim_{n \to \infty} n^{p-1} \sin^2(n!) \] ### Step 3: Analyze the Behavior of \( \sin^2(n!) \) The term \( \sin^2(n!) \) oscillates between 0 and 1 for all \( n \). Therefore, we can say: \[ 0 \leq \sin^2(n!) \leq 1 \] This means that: \[ 0 \leq n^{p-1} \sin^2(n!) \leq n^{p-1} \] ### Step 4: Determine the Limit of \( n^{p-1} \) Since \( p < 1 \), we have \( p - 1 < 0 \). Thus, as \( n \to \infty \): \[ n^{p-1} \to 0 \] This implies that: \[ \lim_{n \to \infty} n^{p-1} \sin^2(n!) = 0 \] ### Step 5: Conclude the Limit By the squeeze theorem, since \( n^{p-1} \sin^2(n!) \) is squeezed between 0 and \( n^{p-1} \) (which approaches 0), we conclude that: \[ \lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n + 1} = 0 \] ### Final Answer Thus, the limit is: \[ \boxed{0} \]

To solve the limit \( \lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n + 1} \) where \( 0 < p < 1 \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit expression: \[ \lim_{n \to \infty} \frac{n^p \sin^2(n!)}{n + 1} \] We can simplify the denominator by dividing both the numerator and the denominator by \( n \): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

lim_(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

Evaluate: ("lim")_(n→oo)(n^p sin^2(n !))/(n+1)

lim_(nrarr oo) (a^n_b^n)/(a^n+b^n) , where 1lt b lt a , is equal to

lim_(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

lim_(n rarr oo)3^(1/n) equals

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

If 0 lt alpha lt beta then lim_(n to oo) (beta^(n) + alpha^(n))^((1)/(n)) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The value of lim(xrarr oo) 1+(1)/(x^n)^x,ngt 0, is

    Text Solution

    |

  2. lim(x->a^-) {(|x|^3)/a-[x/a]^3} ,(a > 0), where [x] denotes the greate...

    Text Solution

    |

  3. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  4. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  5. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  6. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  7. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  8. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  9. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  10. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |

  11. If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the f...

    Text Solution

    |

  12. The value of lim(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+.......

    Text Solution

    |

  13. If l =lim(xrarr0) (tanx^(n))/((tanx)^m), where m,n in N, then

    Text Solution

    |

  14. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  15. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  16. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  17. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |

  18. If the graph of the function y=f(x) has a unique tangent at the point ...

    Text Solution

    |

  19. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  20. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |