Home
Class 12
MATHS
lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)...

`lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2)` is equal to

A

n

B

`(n-1)2^n`

C

`(n-1)2^n+1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 2} \frac{\sum_{r=1}^{n} x^r - \sum_{r=1}^{n} 2^r}{x - 2}, \] we will first simplify the expression in the numerator. ### Step 1: Expand the Summations The sum \(\sum_{r=1}^{n} x^r\) can be expressed using the formula for the sum of a geometric series: \[ \sum_{r=1}^{n} x^r = x + x^2 + x^3 + \ldots + x^n = \frac{x(1 - x^n)}{1 - x} \quad \text{(for } x \neq 1\text{)}. \] Similarly, for \(\sum_{r=1}^{n} 2^r\): \[ \sum_{r=1}^{n} 2^r = 2 + 2^2 + 2^3 + \ldots + 2^n = \frac{2(1 - 2^n)}{1 - 2} = 2(2^n - 1). \] ### Step 2: Substitute the Summations into the Limit Now substituting these into our limit gives: \[ \lim_{x \to 2} \frac{\frac{x(1 - x^n)}{1 - x} - 2(2^n - 1)}{x - 2}. \] ### Step 3: Simplify the Numerator We can rewrite the numerator: \[ \frac{x(1 - x^n)}{1 - x} - 2(2^n - 1) = \frac{x(1 - x^n) - 2(2^n - 1)(1 - x)}{1 - x}. \] ### Step 4: Combine Terms Now, we need to simplify \(x(1 - x^n) - 2(2^n - 1)(1 - x)\): \[ = x - x^{n+1} - 2(2^n - 1) + 2(2^n - 1)x. \] ### Step 5: Factor the Expression The expression can be factored to find the limit as \(x\) approaches 2. We will need to evaluate the limit using L'Hôpital's Rule since both the numerator and denominator approach 0 as \(x\) approaches 2. ### Step 6: Apply L'Hôpital's Rule Taking the derivative of the numerator and the denominator: 1. Derivative of the numerator: - Use the product rule and chain rule to differentiate. 2. Derivative of the denominator: - The derivative of \(x - 2\) is simply 1. ### Step 7: Evaluate the Limit After applying L'Hôpital's Rule, substitute \(x = 2\) into the differentiated expression to find the limit. ### Final Result After performing these steps, you will find that: \[ \lim_{x \to 2} \frac{\sum_{r=1}^{n} x^r - \sum_{r=1}^{n} 2^r}{x - 2} = n \cdot 2^{n-1}. \] ### Conclusion Thus, the limit evaluates to: \[ \boxed{n \cdot 2^{n-1}}. \]

To solve the limit \[ \lim_{x \to 2} \frac{\sum_{r=1}^{n} x^r - \sum_{r=1}^{n} 2^r}{x - 2}, \] we will first simplify the expression in the numerator. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^n r (n-r +1) is equal to :

The value of lim_(xrarr2)Sigma_(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equal to

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

sum_(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. lim(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1, is equal to

    Text Solution

    |

  2. If lim(xrarr0) (cosx+a sinbx)^(1//x)= e^2, then the values of a and b ...

    Text Solution

    |

  3. lim(xrarr2)(sum(r=1)^(n)x^r-sum(r=1)^(n)2^r)/(x-2) is equal to

    Text Solution

    |

  4. If alpha is a repeated root of ax^2+bx +c=0 , then lim(xrarralpha)(sin...

    Text Solution

    |

  5. If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] den...

    Text Solution

    |

  6. If [.] denotes the greatest intger function, then lim(xrarr0) (tan([-2...

    Text Solution

    |

  7. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  8. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |

  9. If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the f...

    Text Solution

    |

  10. The value of lim(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+.......

    Text Solution

    |

  11. If l =lim(xrarr0) (tanx^(n))/((tanx)^m), where m,n in N, then

    Text Solution

    |

  12. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  13. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  14. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  15. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |

  16. If the graph of the function y=f(x) has a unique tangent at the point ...

    Text Solution

    |

  17. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  18. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  19. lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

    Text Solution

    |

  20. If lim (x to 0) ((sin (sin x)-sin x))/(ax ^(3) + bx ^(5) +c)=-(1)/(12)...

    Text Solution

    |