Home
Class 12
MATHS
If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/...

If `phi(x)=lim_(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n))` then which of the following is correct

A

`phi (x)=g(x) "for all"x in R`

B

`phi (x)=f(x)"for all" x in R `

C

`phix={(g(x)"for" -1ltxlt1,,),(f(x)"for"|x|ge1,,):}`

D

`phix={(g(x)"for" |x|lt1,,),(f(x)"for"|x|gt1,,),((f(x)+g(x))/(2)"for"|x|=1,,):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the limit given in the function \( \phi(x) \): \[ \phi(x) = \lim_{n \to \infty} \frac{x^{2n}(f(x) + g(x))}{1 + x^{2n}} \] We will consider three cases based on the value of \( |x| \). ### Step 1: Case 1 - When \( |x| < 1 \) If \( |x| < 1 \), as \( n \to \infty \), \( x^{2n} \) approaches 0. Therefore, we can simplify \( \phi(x) \): \[ \phi(x) = \lim_{n \to \infty} \frac{0 \cdot (f(x) + g(x))}{1 + 0} = 0 \] ### Step 2: Case 2 - When \( |x| > 1 \) If \( |x| > 1 \), as \( n \to \infty \), \( x^{2n} \) approaches infinity. Thus, we can simplify \( \phi(x) \): \[ \phi(x) = \lim_{n \to \infty} \frac{x^{2n}(f(x) + g(x))}{x^{2n}} = f(x) + g(x) \] ### Step 3: Case 3 - When \( |x| = 1 \) If \( |x| = 1 \), then \( x^{2n} = 1 \) for all \( n \). Hence, we have: \[ \phi(x) = \lim_{n \to \infty} \frac{(f(x) + g(x))}{1 + 1} = \frac{f(x) + g(x)}{2} \] ### Conclusion Now we can summarize the results from the three cases: 1. If \( |x| < 1 \), then \( \phi(x) = 0 \). 2. If \( |x| > 1 \), then \( \phi(x) = f(x) + g(x) \). 3. If \( |x| = 1 \), then \( \phi(x) = \frac{f(x) + g(x)}{2} \). Based on these results, we can conclude that the correct option is: - \( \phi(x) = 0 \) for \( |x| < 1 \) - \( \phi(x) = f(x) + g(x) \) for \( |x| > 1 \) - \( \phi(x) = \frac{f(x) + g(x)}{2} \) for \( |x| = 1 \)

To solve the problem, we need to analyze the limit given in the function \( \phi(x) \): \[ \phi(x) = \lim_{n \to \infty} \frac{x^{2n}(f(x) + g(x))}{1 + x^{2n}} \] We will consider three cases based on the value of \( |x| \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=lim_(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which of the following alternative(s) is/ are correct?

lim_(n->oo)sin(x/2^n)/(x/2^n)

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

lim_(x->oo)(1-x+x.e^(1/n))^n

A function is defined as f(x)=lim_(x->oo)[cos^(2n) x , if x 1 which of the following does not hold good?

Let f:(-pi/2, pi/2)->R , f(x) ={lim_(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(tanx)^(2n)) x in 0 , n in N ; 1 if x=0 which of the following holds good? (a) f(-(pi^(-))/4)=f((pi^(+))/4) (b) f(-(pi^(-))/4)=f(-(pi^(+))/4) (c) f((pi^(-))/4)=f((pi^(+))/4) (d) f(0^(+))=f(0)=f(0^(-))

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. ("lim")(xvecoo)[(x^4sin(1/x)+x)/((1+|x|^3)]=

    Text Solution

    |

  2. lim(n to oo) (1+x)(1+x^(2))(1+x^(4))……………(1+x^(2n)),|x|lt1 is

    Text Solution

    |

  3. If phi(x)=lim(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the f...

    Text Solution

    |

  4. The value of lim(x to pi//2){1^(sec^2x) +2^(sec^2x) +3^(sec^2x)+.......

    Text Solution

    |

  5. If l =lim(xrarr0) (tanx^(n))/((tanx)^m), where m,n in N, then

    Text Solution

    |

  6. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  7. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  8. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  9. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |

  10. If the graph of the function y=f(x) has a unique tangent at the point ...

    Text Solution

    |

  11. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  12. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  13. lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

    Text Solution

    |

  14. If lim (x to 0) ((sin (sin x)-sin x))/(ax ^(3) + bx ^(5) +c)=-(1)/(12)...

    Text Solution

    |

  15. lim(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N ...

    Text Solution

    |

  16. lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

    Text Solution

    |

  17. lim(xtoa){[((a^(1//2)+x^(1//2)),(a^(1//4)-x^(1//4)))^(-1)-(2(ax)^(1//4...

    Text Solution

    |

  18. The value of lim(nto oo){3sqrt(n^2-n^3)+n}, is

    Text Solution

    |

  19. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  20. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |