Home
Class 12
MATHS
lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((...

`lim_(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2))` is equal to

A

1

B

`sqrt(2//3)`

C

`sqrt(3//2)`

D

`e^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to -1} \left( \frac{x^4 + x^2 + x + 1}{x^2 - x + 1} \right)^{\frac{1 - \cos(x + 1)}{(x + 1)^2}}, \] we will follow these steps: ### Step 1: Evaluate the limit of the base expression First, we need to evaluate the base of the limit as \( x \) approaches \(-1\): \[ \frac{x^4 + x^2 + x + 1}{x^2 - x + 1}. \] Substituting \( x = -1 \): \[ \text{Numerator: } (-1)^4 + (-1)^2 + (-1) + 1 = 1 + 1 - 1 + 1 = 2, \] \[ \text{Denominator: } (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3. \] Thus, \[ \frac{x^4 + x^2 + x + 1}{x^2 - x + 1} \to \frac{2}{3} \text{ as } x \to -1. \] ### Step 2: Evaluate the limit of the exponent Next, we need to evaluate the exponent: \[ \frac{1 - \cos(x + 1)}{(x + 1)^2}. \] Substituting \( x = -1 \): \[ 1 - \cos(0) = 1 - 1 = 0, \] \[ (x + 1)^2 = 0^2 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). We can use L'Hôpital's Rule to evaluate this limit. ### Step 3: Apply L'Hôpital's Rule Taking derivatives of the numerator and denominator: 1. The derivative of \( 1 - \cos(x + 1) \) is \( \sin(x + 1) \). 2. The derivative of \( (x + 1)^2 \) is \( 2(x + 1) \). Now we have: \[ \lim_{x \to -1} \frac{1 - \cos(x + 1)}{(x + 1)^2} = \lim_{x \to -1} \frac{\sin(x + 1)}{2(x + 1)}. \] Substituting \( x = -1 \): \[ \text{Numerator: } \sin(0) = 0, \] \[ \text{Denominator: } 2(0) = 0. \] Again, we have \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 4: Apply L'Hôpital's Rule again Taking derivatives again: 1. The derivative of \( \sin(x + 1) \) is \( \cos(x + 1) \). 2. The derivative of \( 2(x + 1) \) is \( 2 \). Now we have: \[ \lim_{x \to -1} \frac{\sin(x + 1)}{2(x + 1)} = \lim_{x \to -1} \frac{\cos(x + 1)}{2}. \] Substituting \( x = -1 \): \[ \cos(0) = 1. \] Thus, \[ \lim_{x \to -1} \frac{\sin(x + 1)}{2(x + 1)} = \frac{1}{2}. \] ### Step 5: Combine results Now we can combine our results: The limit becomes: \[ \left( \frac{2}{3} \right)^{\frac{1}{2}} = \sqrt{\frac{2}{3}}. \] ### Final Answer Thus, the final result is: \[ \lim_{x \to -1} \left( \frac{x^4 + x^2 + x + 1}{x^2 - x + 1} \right)^{\frac{1 - \cos(x + 1)}{(x + 1)^2}} = \sqrt{\frac{2}{3}}. \]

To solve the limit \[ \lim_{x \to -1} \left( \frac{x^4 + x^2 + x + 1}{x^2 - x + 1} \right)^{\frac{1 - \cos(x + 1)}{(x + 1)^2}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x->1)[(x^3+2x^2+x+1)/(x^2+2x+3)]^((1-cos(x-1))/(x-1)^2)

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

lim_(x rarr0)((1+x)^(1/x)-e(1-(x)/(2)))/((1-cos x))

lim_(xrarr0)(4^x-1)/(3^x-1) equals

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If l =lim(xrarr0) (tanx^(n))/((tanx)^m), where m,n in N, then

    Text Solution

    |

  2. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  3. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  4. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  5. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |

  6. If the graph of the function y=f(x) has a unique tangent at the point ...

    Text Solution

    |

  7. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  8. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  9. lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

    Text Solution

    |

  10. If lim (x to 0) ((sin (sin x)-sin x))/(ax ^(3) + bx ^(5) +c)=-(1)/(12)...

    Text Solution

    |

  11. lim(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N ...

    Text Solution

    |

  12. lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

    Text Solution

    |

  13. lim(xtoa){[((a^(1//2)+x^(1//2)),(a^(1//4)-x^(1//4)))^(-1)-(2(ax)^(1//4...

    Text Solution

    |

  14. The value of lim(nto oo){3sqrt(n^2-n^3)+n}, is

    Text Solution

    |

  15. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  16. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |

  17. Evaluate underset(xto0)lim{1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//s...

    Text Solution

    |

  18. The value of lim(xto pi//2)([x/2])/(log(sinx)) is equal to

    Text Solution

    |

  19. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  20. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |