Home
Class 12
MATHS
lim(xrarre) (log(e)x-1)/(|x-e|) is...

`lim_(xrarre) (log_(e)x-1)/(|x-e|)` is

A

`(1)/(e)`

B

`-(1)/(e)`

C

e

D

none -existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to e} \frac{\log_e x - 1}{|x - e|} \), we will analyze the limit from both the right-hand side and the left-hand side. ### Step 1: Right-Hand Limit We first calculate the right-hand limit as \( x \) approaches \( e \) from the right (i.e., \( x \to e^+ \)). \[ \lim_{x \to e^+} \frac{\log_e x - 1}{|x - e|} = \lim_{x \to e^+} \frac{\log_e x - 1}{x - e} \] Since \( x \) is approaching \( e \) from the right, \( |x - e| = x - e \). ### Step 2: Evaluate the Limit As \( x \to e \), both the numerator and the denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule: \[ \text{Differentiate the numerator: } \frac{d}{dx}(\log_e x - 1) = \frac{1}{x} \] \[ \text{Differentiate the denominator: } \frac{d}{dx}(x - e) = 1 \] Now, applying L'Hôpital's Rule: \[ \lim_{x \to e^+} \frac{\log_e x - 1}{x - e} = \lim_{x \to e^+} \frac{\frac{1}{x}}{1} = \frac{1}{e} \] ### Step 3: Left-Hand Limit Next, we calculate the left-hand limit as \( x \) approaches \( e \) from the left (i.e., \( x \to e^- \)). \[ \lim_{x \to e^-} \frac{\log_e x - 1}{|x - e|} = \lim_{x \to e^-} \frac{\log_e x - 1}{e - x} \] Since \( x \) is approaching \( e \) from the left, \( |x - e| = e - x \). ### Step 4: Evaluate the Left-Hand Limit Again, we have the indeterminate form \( \frac{0}{0} \) as \( x \to e \). We apply L'Hôpital's Rule again: \[ \text{Differentiate the numerator: } \frac{d}{dx}(\log_e x - 1) = \frac{1}{x} \] \[ \text{Differentiate the denominator: } \frac{d}{dx}(e - x) = -1 \] Now, applying L'Hôpital's Rule: \[ \lim_{x \to e^-} \frac{\log_e x - 1}{e - x} = \lim_{x \to e^-} \frac{\frac{1}{x}}{-1} = -\frac{1}{e} \] ### Step 5: Conclusion Now we compare the right-hand limit and the left-hand limit: - Right-hand limit: \( \frac{1}{e} \) - Left-hand limit: \( -\frac{1}{e} \) Since the two limits are not equal, the limit does not exist. Thus, the final answer is: \[ \text{The limit does not exist.} \]

To solve the limit \( \lim_{x \to e} \frac{\log_e x - 1}{|x - e|} \), we will analyze the limit from both the right-hand side and the left-hand side. ### Step 1: Right-Hand Limit We first calculate the right-hand limit as \( x \) approaches \( e \) from the right (i.e., \( x \to e^+ \)). \[ \lim_{x \to e^+} \frac{\log_e x - 1}{|x - e|} = \lim_{x \to e^+} \frac{\log_e x - 1}{x - e} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarre) (logx-1)/(x-e) , is

lim_(xrarr0)(x^3 log x)

If graph of the function y=f(x) is continuous and passes through point (3, 1) then lim_(xrarr3) (log_(e)(3f(x)-2))/(2(1-f(x))) is equal

lim_(x rarr0)(log_(e)(1+x)-x)/(x^(2))=-(1)/(2)

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

lim_(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exi...

    Text Solution

    |

  2. lim(xrarr-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^2)) is equa...

    Text Solution

    |

  3. lim(xrarre) (log(e)x-1)/(|x-e|) is

    Text Solution

    |

  4. The value of underset(ntooo)lim[(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...

    Text Solution

    |

  5. If the graph of the function y=f(x) has a unique tangent at the point ...

    Text Solution

    |

  6. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  7. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  8. lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

    Text Solution

    |

  9. If lim (x to 0) ((sin (sin x)-sin x))/(ax ^(3) + bx ^(5) +c)=-(1)/(12)...

    Text Solution

    |

  10. lim(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N ...

    Text Solution

    |

  11. lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

    Text Solution

    |

  12. lim(xtoa){[((a^(1//2)+x^(1//2)),(a^(1//4)-x^(1//4)))^(-1)-(2(ax)^(1//4...

    Text Solution

    |

  13. The value of lim(nto oo){3sqrt(n^2-n^3)+n}, is

    Text Solution

    |

  14. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  15. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |

  16. Evaluate underset(xto0)lim{1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//s...

    Text Solution

    |

  17. The value of lim(xto pi//2)([x/2])/(log(sinx)) is equal to

    Text Solution

    |

  18. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  19. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  20. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |