Home
Class 12
MATHS
lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((...

`lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3))` is equal to

A

1

B

`(1)/(2)`

C

`-(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \ldots + \frac{1}{(2n+1)(2n+3)} \right) \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Terms**: Each term in the series can be rewritten as: \[ \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) \] for \( k = 1, 2, \ldots, n \). 2. **Substituting the Terms**: Therefore, the limit can be rewritten as: \[ \lim_{n \to \infty} \frac{1}{2} \left( \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \ldots + \left( \frac{1}{2n+1} - \frac{1}{2n+3} \right) \right) \] 3. **Simplifying the Series**: Notice that this is a telescoping series. Most terms will cancel out: \[ = \lim_{n \to \infty} \frac{1}{2} \left( 1 - \frac{1}{2n+3} \right) \] 4. **Taking the Limit**: As \( n \to \infty \), \( \frac{1}{2n+3} \to 0 \): \[ = \frac{1}{2} \left( 1 - 0 \right) = \frac{1}{2} \] 5. **Final Result**: Thus, the limit is: \[ \lim_{n \to \infty} \left( \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \ldots + \frac{1}{(2n+1)(2n+3)} \right) = \frac{1}{2} \]

To solve the limit \( \lim_{n \to \infty} \left( \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \ldots + \frac{1}{(2n+1)(2n+3)} \right) \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Terms**: Each term in the series can be rewritten as: \[ \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

Value of underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3)) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  2. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  3. lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

    Text Solution

    |

  4. If lim (x to 0) ((sin (sin x)-sin x))/(ax ^(3) + bx ^(5) +c)=-(1)/(12)...

    Text Solution

    |

  5. lim(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N ...

    Text Solution

    |

  6. lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

    Text Solution

    |

  7. lim(xtoa){[((a^(1//2)+x^(1//2)),(a^(1//4)-x^(1//4)))^(-1)-(2(ax)^(1//4...

    Text Solution

    |

  8. The value of lim(nto oo){3sqrt(n^2-n^3)+n}, is

    Text Solution

    |

  9. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  10. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |

  11. Evaluate underset(xto0)lim{1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//s...

    Text Solution

    |

  12. The value of lim(xto pi//2)([x/2])/(log(sinx)) is equal to

    Text Solution

    |

  13. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  14. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  15. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |

  16. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  19. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  20. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |