Home
Class 12
MATHS
lim(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+...

`lim_(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N` is equal to

A

`n+1`

B

`n`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0^-} \frac{[x] + [x^2] + [x^3] + \ldots + [x^{2n+1}] + n + 1}{1 + [x^2] + |x| + 2x} \] where \( n \in \mathbb{N} \), we will analyze the behavior of each term as \( x \) approaches \( 0 \) from the left. ### Step 1: Analyze the numerator 1. **Greatest Integer Function**: For \( x \to 0^- \), \( x \) is a negative number very close to \( 0 \). The greatest integer function \( [x] \) will be \( -1 \) because it rounds down to the nearest integer. \[ [x] = -1 \] 2. **For \( x^2, x^3, \ldots, x^{2n+1} \)**: Since \( x^2 \) and all higher even powers will be positive and very small, their greatest integer will be \( 0 \): \[ [x^2] = [x^3] = \ldots = [x^{2n}] = 0 \] For odd powers (like \( x \) and \( x^3 \)), they will be negative and their greatest integer will also be \( -1 \): \[ [x] = -1, \quad [x^3] = -1, \quad \ldots, \quad [x^{2n+1}] = -1 \] 3. **Counting Terms**: The total number of terms in the numerator is \( n + 1 \) (from \( [x], [x^3], \ldots, [x^{2n+1}] \)). The odd-indexed terms contribute \( -1 \) each, and there are \( n + 1 \) such terms. Thus, the contribution from the odd powers is: \[ -1 \times (n + 1) = -(n + 1) \] 4. **Final Numerator**: Therefore, the numerator becomes: \[ [x] + [x^2] + [x^3] + \ldots + [x^{2n+1}] + n + 1 = -(n + 1) + (n + 1) = 0 \] ### Step 2: Analyze the denominator 1. **For \( [x^2] \)**: As established, \( [x^2] = 0 \). 2. **For \( |x| \)**: Since \( x \to 0^- \), \( |x| = -x \), which approaches \( 0 \) from the positive side. 3. **For \( 2x \)**: As \( x \to 0^- \), \( 2x \) approaches \( 0 \) from the negative side. 4. **Final Denominator**: Therefore, the denominator becomes: \[ 1 + [x^2] + |x| + 2x = 1 + 0 + 0 + 0 = 1 \] ### Step 3: Combine the results Now, substituting the results from the numerator and denominator into the limit: \[ \lim_{x \to 0^-} \frac{0}{1} = 0 \] ### Conclusion Thus, the limit is: \[ \boxed{0} \]

To solve the limit \[ \lim_{x \to 0^-} \frac{[x] + [x^2] + [x^3] + \ldots + [x^{2n+1}] + n + 1}{1 + [x^2] + |x| + 2x} \] where \( n \in \mathbb{N} \), we will analyze the behavior of each term as \( x \) approaches \( 0 \) from the left. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(n->oo)[2x+4x^3+6x^5++2n x^(2n-1)] (0ltxlt1) then int f(x)dx is equal to:

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

If sum of all the coefficient of even powers in (1-x+x^(2)-x^(3)....x^(2n))(1+x^()+x^(2)....+x^(2n)) is 61 then n is equal to

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to (a) 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a) logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

    Text Solution

    |

  2. If lim (x to 0) ((sin (sin x)-sin x))/(ax ^(3) + bx ^(5) +c)=-(1)/(12)...

    Text Solution

    |

  3. lim(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N ...

    Text Solution

    |

  4. lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

    Text Solution

    |

  5. lim(xtoa){[((a^(1//2)+x^(1//2)),(a^(1//4)-x^(1//4)))^(-1)-(2(ax)^(1//4...

    Text Solution

    |

  6. The value of lim(nto oo){3sqrt(n^2-n^3)+n}, is

    Text Solution

    |

  7. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  8. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |

  9. Evaluate underset(xto0)lim{1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//s...

    Text Solution

    |

  10. The value of lim(xto pi//2)([x/2])/(log(sinx)) is equal to

    Text Solution

    |

  11. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  12. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  13. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |

  14. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  15. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  16. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  17. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  18. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  19. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  20. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |