Home
Class 12
MATHS
The value of lim(nto oo){3sqrt(n^2-n^3)+...

The value of `lim_(nto oo){3sqrt(n^2-n^3)+n}`, is

A

`(1)/(3)`

B

`(-1)/(3)`

C

`(2)/(3)`

D

`(-2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( 3\sqrt{n^2 - n^3} + n \right) \), we can follow these steps: ### Step 1: Rewrite the expression Start by rewriting the expression inside the limit: \[ \lim_{n \to \infty} \left( 3\sqrt{n^2 - n^3} + n \right) \] ### Step 2: Factor out \( n^3 \) from the square root Notice that we can factor \( n^3 \) out of the square root: \[ \sqrt{n^2 - n^3} = \sqrt{n^3 \left( \frac{1}{n} - 1 \right)} = n\sqrt{\frac{1}{n} - 1} \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \left( 3n\sqrt{\frac{1}{n} - 1} + n \right) \] ### Step 3: Factor out \( n \) Now, factor \( n \) out of the entire expression: \[ \lim_{n \to \infty} n \left( 3\sqrt{\frac{1}{n} - 1} + 1 \right) \] ### Step 4: Analyze the limit of the square root term As \( n \to \infty \), \( \frac{1}{n} \) approaches \( 0 \): \[ \sqrt{\frac{1}{n} - 1} \to \sqrt{0 - 1} = \sqrt{-1} \text{ (not defined in real numbers)} \] However, we can analyze the limit more carefully: \[ \sqrt{\frac{1}{n} - 1} = \sqrt{-1 + \frac{1}{n}} \to \sqrt{-1} \text{ (which is } i \text{ in complex numbers)} \] But for our limit, we need to consider the behavior as \( n \to \infty \): \[ \sqrt{\frac{1}{n} - 1} \approx \sqrt{-1} \text{ (dominates)} \] ### Step 5: Substitute back into the limit Now substitute back into the limit: \[ \lim_{n \to \infty} n \left( 3\sqrt{-1} + 1 \right) = \lim_{n \to \infty} n \left( 3i + 1 \right) \] ### Step 6: Conclude the limit As \( n \to \infty \), the term \( n(3i + 1) \) diverges unless \( 3i + 1 = 0 \), which it does not. Thus, the limit diverges. ### Final Answer The limit does not converge to a finite value; it diverges.

To solve the limit \( \lim_{n \to \infty} \left( 3\sqrt{n^2 - n^3} + n \right) \), we can follow these steps: ### Step 1: Rewrite the expression Start by rewriting the expression inside the limit: \[ \lim_{n \to \infty} \left( 3\sqrt{n^2 - n^3} + n \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

The value of lim_(n->oo) n^(1/n)

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

    Text Solution

    |

  2. lim(xtoa){[((a^(1//2)+x^(1//2)),(a^(1//4)-x^(1//4)))^(-1)-(2(ax)^(1//4...

    Text Solution

    |

  3. The value of lim(nto oo){3sqrt(n^2-n^3)+n}, is

    Text Solution

    |

  4. Let f(x)=[x]+[-x], where [x] denotes the greastest integer less than o...

    Text Solution

    |

  5. If [.] denotes the greatest integer function , then lim(xrarr0) sin[-s...

    Text Solution

    |

  6. Evaluate underset(xto0)lim{1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//s...

    Text Solution

    |

  7. The value of lim(xto pi//2)([x/2])/(log(sinx)) is equal to

    Text Solution

    |

  8. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  9. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  10. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |

  11. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  12. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  13. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  14. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  15. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  16. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  17. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |

  18. Let f :RtoR be a positive, increasing function with underset(xtooo)l...

    Text Solution

    |

  19. Let f : R to [0,oo)" be such that "underset(x to 5)lim f(x)" exists an...

    Text Solution

    |

  20. Let f(theta)-1/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+….+(...

    Text Solution

    |