Home
Class 12
MATHS
lim(xrarr0) [(100 tan x sin x)/(x^2)] is...

`lim_(xrarr0) [(100 tan x sin x)/(x^2)]` is (where `[.]` represents greatest integer function).

A

99

B

100

C

0

D

non-existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{100 \tan x \sin x}{x^2} \) and find the greatest integer function of the result, we can follow these steps: ### Step 1: Analyze the limit We start with the expression: \[ \lim_{x \to 0} \frac{100 \tan x \sin x}{x^2} \] ### Step 2: Use known limits We know that as \( x \) approaches 0: - \( \tan x \approx x \) (more precisely, \( \tan x \to x \) as \( x \to 0 \)) - \( \sin x \approx x \) (more precisely, \( \sin x \to x \) as \( x \to 0 \)) ### Step 3: Substitute the approximations Using these approximations, we can rewrite the limit: \[ \tan x \sin x \approx x \cdot x = x^2 \] Thus, we have: \[ \lim_{x \to 0} \frac{100 \tan x \sin x}{x^2} \approx \lim_{x \to 0} \frac{100 \cdot x^2}{x^2} \] ### Step 4: Simplify the expression This simplifies to: \[ \lim_{x \to 0} 100 = 100 \] ### Step 5: Consider the behavior near zero However, we need to be careful about the behavior of \( \tan x \) and \( \sin x \) as \( x \) approaches 0. We know: - \( \tan x = \frac{\sin x}{\cos x} \) - As \( x \to 0 \), \( \cos x \to 1 \) Thus: \[ \tan x \sin x = \frac{\sin^2 x}{\cos x} \] And we can rewrite our limit as: \[ \lim_{x \to 0} \frac{100 \sin^2 x}{x^2 \cos x} \] ### Step 6: Use the limit of \( \sin^2 x \) Using the fact that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} = 1 \] Thus: \[ \lim_{x \to 0} \frac{100 \sin^2 x}{x^2 \cos x} = \frac{100 \cdot 1}{1} = 100 \] ### Step 7: Final result Since the limit approaches 100, we consider the greatest integer function: \[ \lfloor 100 \rfloor = 99 \] ### Conclusion Thus, the final answer is: \[ \boxed{99} \]

To solve the limit \( \lim_{x \to 0} \frac{100 \tan x \sin x}{x^2} \) and find the greatest integer function of the result, we can follow these steps: ### Step 1: Analyze the limit We start with the expression: \[ \lim_{x \to 0} \frac{100 \tan x \sin x}{x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

The value of lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] represents the greatest integral function) is

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.

lim_(xrarr0) (tan 4x)/(tan 2x)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The value of lim(xto pi//2)([x/2])/(log(sinx)) is equal to

    Text Solution

    |

  2. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  3. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  4. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |

  5. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  6. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  7. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  8. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  9. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  10. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  11. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |

  12. Let f :RtoR be a positive, increasing function with underset(xtooo)l...

    Text Solution

    |

  13. Let f : R to [0,oo)" be such that "underset(x to 5)lim f(x)" exists an...

    Text Solution

    |

  14. Let f(theta)-1/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+….+(...

    Text Solution

    |

  15. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  16. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. lim(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

    Text Solution

    |

  19. ("lim")(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n(when alpha in Q) i...

    Text Solution

    |

  20. The value of lim(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+....

    Text Solution

    |