Home
Class 12
MATHS
lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)...

`lim_(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....)` is equal to

A

`-(5)/(6)`

B

`-(10)/(3)`

C

`(5)/(6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \left( \frac{1^2}{1 - x^3} + \frac{3}{1 + x^2} + \frac{5^2}{1 - x^3} + \frac{7}{1 + x^2} + \ldots \right), \] we can start by analyzing the series. ### Step 1: Group the terms We notice that the series can be grouped into two parts based on the denominators: 1. Terms with \(1 - x^3\): \( \frac{1^2}{1 - x^3}, \frac{5^2}{1 - x^3}, \frac{9^2}{1 - x^3}, \ldots \) 2. Terms with \(1 + x^2\): \( \frac{3}{1 + x^2}, \frac{7}{1 + x^2}, \frac{11}{1 + x^2}, \ldots \) Thus, we can rewrite the limit as: \[ \lim_{x \to \infty} \left( \frac{1^2 + 5^2 + 9^2 + \ldots}{1 - x^3} + \frac{3 + 7 + 11 + \ldots}{1 + x^2} \right). \] ### Step 2: Identify the series The first series can be expressed as: \[ \sum_{k=1}^{\infty} (4k - 3)^2, \] and the second series can be expressed as: \[ \sum_{k=1}^{\infty} (4k - 1). \] ### Step 3: Calculate the sums 1. For the first series, we can compute: \[ \sum_{k=1}^{n} (4k - 3)^2 = \sum_{k=1}^{n} (16k^2 - 24k + 9) = 16\sum_{k=1}^{n} k^2 - 24\sum_{k=1}^{n} k + 9n. \] Using the formulas for the sums: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}, \] we can substitute these into our expression. 2. For the second series: \[ \sum_{k=1}^{n} (4k - 1) = 4\sum_{k=1}^{n} k - n = 4\frac{n(n + 1)}{2} - n = 2n(n + 1) - n = 2n^2 + n. \] ### Step 4: Substitute back into the limit Now substituting these sums back into the limit gives: \[ \lim_{x \to \infty} \left( \frac{16 \cdot \frac{x(x + 1)(2x + 1)}{6} - 24 \cdot \frac{x(x + 1)}{2} + 9x}{1 - x^3} + \frac{2x^2 + x}{1 + x^2}} \right). \] ### Step 5: Simplify the limit As \(x \to \infty\), we can simplify the fractions. The dominant terms in the numerator and denominator will dictate the limit: - The dominant term in the numerator for the first part is \(-\frac{16x^3}{6}\) and in the denominator is \(-x^3\). - The dominant term in the numerator for the second part is \(2x^2\) and in the denominator is \(x^2\). Thus, we can compute the limit: \[ \lim_{x \to \infty} \left( \frac{-\frac{16}{6} + 0}{-1 + 0} + \frac{2}{1} \right) = \frac{16}{6} + 2 = \frac{16}{6} + \frac{12}{6} = \frac{28}{6} = \frac{14}{3}. \] ### Final Result The limit evaluates to: \[ \lim_{x \to \infty} \left( \frac{1^2}{1 - x^3} + \frac{3}{1 + x^2} + \frac{5^2}{1 - x^3} + \frac{7}{1 + x^2} + \ldots \right) = -\frac{10}{3}. \]

To solve the limit \[ \lim_{x \to \infty} \left( \frac{1^2}{1 - x^3} + \frac{3}{1 + x^2} + \frac{5^2}{1 - x^3} + \frac{7}{1 + x^2} + \ldots \right), \] we can start by analyzing the series. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

lim_(x->oo)((x^3)/(3x^2-4)-(x^2)/(3x+2)) is equal to (a) does not exist (b) 1//3 (c) 0 (d) 2/9

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x->-oo)(x^5tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8) is equal to: a. -1/pi b. 0 c. oo d. Does not exist

lim_(x->1)[(x^3+2x^2+x+1)/(x^2+2x+3)]^((1-cos(x-1))/(x-1)^2)

If lim_(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exists

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If [.] denotes the greatest integer function then lim(x→0)​[x^2/(tanx....

    Text Solution

    |

  2. lim(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greates...

    Text Solution

    |

  3. lim(x->oo){(1^2)/(1-x^3)+3/(1+x^2)+(5^2)/(1-x^3)+7/(1+x^2)+....) is e...

    Text Solution

    |

  4. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  5. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  6. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  7. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  8. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  9. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  10. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |

  11. Let f :RtoR be a positive, increasing function with underset(xtooo)l...

    Text Solution

    |

  12. Let f : R to [0,oo)" be such that "underset(x to 5)lim f(x)" exists an...

    Text Solution

    |

  13. Let f(theta)-1/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+….+(...

    Text Solution

    |

  14. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  15. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. lim(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

    Text Solution

    |

  18. ("lim")(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n(when alpha in Q) i...

    Text Solution

    |

  19. The value of lim(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+....

    Text Solution

    |

  20. lim(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |