Home
Class 12
MATHS
The value of lim(xrarr0) (int(0)^(x^2)se...

The value of `lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx` , is

A

0

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps: ### Step 1: Identify the limit expression We need to evaluate the limit: \[ \lim_{x \to 0} \frac{\int_{0}^{x^2} \sec^2 t \, dt}{x \sin x} \] ### Step 2: Evaluate the integral in the numerator First, we need to compute the integral: \[ \int_{0}^{x^2} \sec^2 t \, dt \] The integral of \(\sec^2 t\) is \(\tan t\). Therefore, we have: \[ \int_{0}^{x^2} \sec^2 t \, dt = \tan(x^2) - \tan(0) = \tan(x^2) \] ### Step 3: Rewrite the limit expression Now we can rewrite the limit expression as: \[ \lim_{x \to 0} \frac{\tan(x^2)}{x \sin x} \] ### Step 4: Check the form of the limit As \(x \to 0\), both the numerator and denominator approach 0, giving us the indeterminate form \(\frac{0}{0}\). Thus, we can apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule We differentiate the numerator and denominator: - The derivative of the numerator \(\tan(x^2)\) is: \[ \frac{d}{dx} \tan(x^2) = \sec^2(x^2) \cdot 2x \] - The derivative of the denominator \(x \sin x\) is: \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x \] ### Step 6: Rewrite the limit with derivatives Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2x \sec^2(x^2)}{\sin x + x \cos x} \] ### Step 7: Substitute \(x = 0\) into the new limit Substituting \(x = 0\) gives: - The numerator becomes: \[ 2(0) \sec^2(0) = 0 \] - The denominator becomes: \[ \sin(0) + 0 \cdot \cos(0) = 0 \] This is still an indeterminate form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again. ### Step 8: Differentiate again Differentiate the numerator and denominator again: - The derivative of the numerator \(2x \sec^2(x^2)\) is: \[ 2 \sec^2(x^2) + 2x \cdot 2\sec^2(x^2) \tan(x^2) = 2\sec^2(x^2)(1 + 2x \tan(x^2)) \] - The derivative of the denominator \(\sin x + x \cos x\) is: \[ \cos x + \cos x - x \sin x = 2\cos x - x \sin x \] ### Step 9: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{2\sec^2(x^2)(1 + 2x \tan(x^2))}{2\cos x - x \sin x} \] ### Step 10: Substitute \(x = 0\) again Substituting \(x = 0\): - The numerator becomes: \[ 2 \sec^2(0)(1 + 0) = 2 \cdot 1 \cdot 1 = 2 \] - The denominator becomes: \[ 2\cos(0) - 0 \cdot \sin(0) = 2 \cdot 1 - 0 = 2 \] ### Step 11: Final limit value Thus, the limit evaluates to: \[ \frac{2}{2} = 1 \] ### Conclusion The value of the limit is: \[ \boxed{1} \]

To solve the limit problem given, we will follow these steps: ### Step 1: Identify the limit expression We need to evaluate the limit: \[ \lim_{x \to 0} \frac{\int_{0}^{x^2} \sec^2 t \, dt}{x \sin x} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->0) ( int_0 ^ (x^2) cost^2 dt)/( xsin x) is

The value of Lt_(xrarr0){(int_0^(x^2) sec^2tdt)/(xsinx)} is (A) 0 (B) 3 (C) 2 (D) 1

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0) (sin 3 x)/(2x)

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(xrarr0) (sinx)/(xqrt(x^2)) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

lim_(xrarr0)(sin(x)/(4))/(x)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  2. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  3. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  4. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  5. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  6. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  7. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |

  8. Let f :RtoR be a positive, increasing function with underset(xtooo)l...

    Text Solution

    |

  9. Let f : R to [0,oo)" be such that "underset(x to 5)lim f(x)" exists an...

    Text Solution

    |

  10. Let f(theta)-1/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+….+(...

    Text Solution

    |

  11. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  12. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. lim(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

    Text Solution

    |

  15. ("lim")(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n(when alpha in Q) i...

    Text Solution

    |

  16. The value of lim(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+....

    Text Solution

    |

  17. lim(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |

  18. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  19. lim(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  20. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |