Home
Class 12
MATHS
For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1...

For `xgt0, lim_(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}`, is

A

0

B

-1

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^+} \left( \sin x^{\frac{1}{x}} + \left( \frac{1}{x} \right)^{\sin x} \right) \), we will break it down step by step. ### Step 1: Rewrite the Limit We can express the limit as: \[ \lim_{x \to 0^+} \left( \sin x^{\frac{1}{x}} + \left( \frac{1}{x} \right)^{\sin x} \right) \] ### Step 2: Evaluate Each Term Separately We will evaluate each term separately. 1. **First Term: \( \lim_{x \to 0^+} \sin x^{\frac{1}{x}} \)** As \( x \to 0^+ \), \( \sin x \to 0 \) and \( \frac{1}{x} \to \infty \). Therefore, we have \( \sin x^{\frac{1}{x}} \to 0^{\infty} \), which is an indeterminate form. Using the fact that \( \sin x \approx x \) for small \( x \): \[ \sin x^{\frac{1}{x}} \approx \left( x \right)^{\frac{1}{x}} \to 0 \] 2. **Second Term: \( \lim_{x \to 0^+} \left( \frac{1}{x} \right)^{\sin x} \)** Here, \( \sin x \to 0 \) as \( x \to 0^+ \). Thus, we can rewrite this term: \[ \left( \frac{1}{x} \right)^{\sin x} = e^{\sin x \log \left( \frac{1}{x} \right)} = e^{-\sin x \log x} \] As \( x \to 0^+ \), \( \sin x \approx x \), hence: \[ -\sin x \log x \approx -x \log x \] Now, we need to evaluate \( \lim_{x \to 0^+} -x \log x \). ### Step 3: Evaluate \( \lim_{x \to 0^+} -x \log x \) To evaluate this limit, we can use L'Hôpital's Rule since it is of the form \( 0 \cdot (-\infty) \): \[ \lim_{x \to 0^+} -x \log x = \lim_{x \to 0^+} \frac{-\log x}{\frac{1}{x}} \] Applying L'Hôpital's Rule: \[ = \lim_{x \to 0^+} \frac{-\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} x = 0 \] ### Step 4: Combine the Results Now we have: 1. \( \lim_{x \to 0^+} \sin x^{\frac{1}{x}} = 0 \) 2. \( \lim_{x \to 0^+} \left( \frac{1}{x} \right)^{\sin x} = e^0 = 1 \) Thus, combining both results: \[ \lim_{x \to 0^+} \left( \sin x^{\frac{1}{x}} + \left( \frac{1}{x} \right)^{\sin x} \right) = 0 + 1 = 1 \] ### Final Answer \[ \lim_{x \to 0^+} \left( \sin x^{\frac{1}{x}} + \left( \frac{1}{x} \right)^{\sin x} \right) = 1 \]

To solve the limit \( \lim_{x \to 0^+} \left( \sin x^{\frac{1}{x}} + \left( \frac{1}{x} \right)^{\sin x} \right) \), we will break it down step by step. ### Step 1: Rewrite the Limit We can express the limit as: \[ \lim_{x \to 0^+} \left( \sin x^{\frac{1}{x}} + \left( \frac{1}{x} \right)^{\sin x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The value of lim(xrarr0) (int(0)^(x^2)sec^2t dt)/(x sin x) dx , is

    Text Solution

    |

  2. Let the sequence ltb(n)gt of real numbers satisfy the recurrence relat...

    Text Solution

    |

  3. For xgt0, lim(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx}, is

    Text Solution

    |

  4. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  5. lim(xrarr0) x^8[(1)/(x^3)], where [.],denotes the greatest integer fun...

    Text Solution

    |

  6. Let f :RtoR be a positive, increasing function with underset(xtooo)l...

    Text Solution

    |

  7. Let f : R to [0,oo)" be such that "underset(x to 5)lim f(x)" exists an...

    Text Solution

    |

  8. Let f(theta)-1/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+….+(...

    Text Solution

    |

  9. Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim(h->0)...

    Text Solution

    |

  10. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. lim(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

    Text Solution

    |

  13. ("lim")(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n(when alpha in Q) i...

    Text Solution

    |

  14. The value of lim(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+....

    Text Solution

    |

  15. lim(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |

  16. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  17. lim(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  18. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  19. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  20. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |