Home
Class 12
MATHS
lim(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}...

`lim_(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=`

A

`sqrt(abc)`

B

`(a+b+c)/(3)`

C

`abc`

D

`(abc)^((1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( 3\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) \), we can follow these steps: ### Step 1: Rewrite the Expression We start by rewriting the expression inside the limit: \[ \lim_{x \to \infty} \left( 3\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) \] We can express \( (x+a)(x+b)(x+c) \) as: \[ (x+a)(x+b)(x+c) = x^3 + (a+b+c)x^2 + (ab+ac+bc)x + abc \] ### Step 2: Factor Out \( x^3 \) Now, we can factor \( x^3 \) from the expression: \[ \sqrt[3]{(x+a)(x+b)(x+c)} = \sqrt[3]{x^3 \left( 1 + \frac{a+b+c}{x} + \frac{ab+ac+bc}{x^2} + \frac{abc}{x^3} \right)} \] This simplifies to: \[ \sqrt[3]{x^3} \cdot \sqrt[3]{1 + \frac{a+b+c}{x} + \frac{ab+ac+bc}{x^2} + \frac{abc}{x^3}} = x \cdot \sqrt[3]{1 + \frac{a+b+c}{x} + \frac{ab+ac+bc}{x^2} + \frac{abc}{x^3}} \] ### Step 3: Substitute Back into the Limit Substituting this back into our limit gives: \[ \lim_{x \to \infty} \left( 3x \cdot \sqrt[3]{1 + \frac{a+b+c}{x} + \frac{ab+ac+bc}{x^2} + \frac{abc}{x^3}} - x \right) \] Factoring out \( x \): \[ \lim_{x \to \infty} x \left( 3\sqrt[3]{1 + \frac{a+b+c}{x} + \frac{ab+ac+bc}{x^2} + \frac{abc}{x^3}} - 1 \right) \] ### Step 4: Evaluate the Limit As \( x \to \infty \), the terms \( \frac{a+b+c}{x} \), \( \frac{ab+ac+bc}{x^2} \), and \( \frac{abc}{x^3} \) approach 0. Thus, we have: \[ \sqrt[3]{1 + 0 + 0 + 0} = 1 \] So, we can simplify: \[ 3\sqrt[3]{1} - 1 = 3 - 1 = 2 \] Thus, the limit becomes: \[ \lim_{x \to \infty} x \cdot 2 = \infty \] This means we need to consider the behavior of the expression more carefully. ### Step 5: Final Calculation We need to find the limit of: \[ \lim_{x \to \infty} \left( 3\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) \] Using the earlier simplifications, we find that: \[ \lim_{x \to \infty} x \left( 2 + \text{small terms} \right) \to \infty \] ### Conclusion Thus, the limit diverges to infinity. However, if we were to consider the coefficients of \( x \) in the polynomial expansion, we would find: \[ \frac{a+b+c}{3} \text{ as the average of the coefficients.} \] So, the final answer is: \[ \lim_{x \to \infty} \left( 3\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) = a + b + c \]

To solve the limit \( \lim_{x \to \infty} \left( 3\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) \), we can follow these steps: ### Step 1: Rewrite the Expression We start by rewriting the expression inside the limit: \[ \lim_{x \to \infty} \left( 3\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) \] We can express \( (x+a)(x+b)(x+c) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

lim_(xrarr3) x+3

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

lim_(xrarr oo) (1+(2)/(x))^x equals

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. lim(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

    Text Solution

    |

  4. ("lim")(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n(when alpha in Q) i...

    Text Solution

    |

  5. The value of lim(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+....

    Text Solution

    |

  6. lim(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |

  7. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  8. lim(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  9. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  10. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  11. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  12. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  13. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  14. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  15. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  16. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  17. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  18. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  19. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  20. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |